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Learning, hypothesis testing, and Nash equilibrium
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Abstract

Consider a finite stage gameG that is repeated infinitely often. At each time, the players have
hypotheses about their opponents’ repeated game strategies. They frequently test their hypotheses
against the opponents’ recent actions. When a hypothesis fails a test, a new one is adopted. Play is
almost rational in the sense that, at each point in time, the players’ strategies areε-best replies to
their beliefs. We show that, at least 1− ε of the timet these hypothesis testing strategies constitute
an ε-equilibrium of the repeated game fromt on; in fact the strategies are close to being subgame
perfect for long stretches of time. This approach solves the problem of learning to play equilibrium
with no prior knowledge (even probabilistic knowledge) of the opponents’ strategies or their payoffs.
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1. Statement of the problem

Consider a group of players who are engaged in a repeated game and are trying to learn
the behavior of their opponents. At every time they play optimally, or almost optimally,
given their beliefs. Their beliefs are generated by alearning process, that is, a procedure
that maps past play to predictions about future play. Are there learning strategies that come
close to equilibrium play of the repeated gamewithout assuming any prior knowledge of
the opponents’ strategies or payoffs?
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There have been several lines of attack on this learning problem, but none of them
is robust in the above sense. The oldest branch of the literature is built on fictitious
play (Brown, 1951). This simple learning process converges to Nash equilibrium for
special classes of games, such as zero-sum games, dominance solvable games, games with
strategic complementarities and diminishing returns, and potential games (Robinson, 1951;
Milgrom and Roberts, 1991; Krishna, 1992; Monderer and Shapley, 1996). However, there
are many examples in which it does not converge to Nash equilibrium (Shapley, 1964;
Jordan, 1993; Foster and Young, 1998a). Further, even in some situations where it does
converge, such as zero-sum games with only mixed equilibria, the convergence is not of
the type we desire: namely, the players’ forecasts are not close to the actual next round
probabilities of play, nor are their strategies close to being in equilibrium.

A second branch of the literature explores conditions under which Bayesian rational
players can learn to play Nash when the distribution of payoff-types is common knowledge.
One answer is provided by Jordan (1991), who shows that if the players’ prior beliefs
about the others’ strategies constitutes a sophisticated Bayesian equilibrium, then every
accumulation point of the posterior beliefs is, with probability one, a Nash equilibrium
in beliefs (see also Jordan, 1992, 1995). In our view this merely pushes the problem of
learning an equilibrium onto another level. Moreover, these results do not solve our version
of the problem because the learning process does not necessarily result in equilibrium or
good prediction for therealized payoff-types.

A third approach to the learning problem was pioneered by Kalai and Lehrer (1993).
They show that if the players’ prior beliefs attach positive probability to all events that
have positive probability under the players’ actual strategies, then with probability one,
play will eventually comeε-close to anε-equilibrium of the repeated game. Their result
would solve our problemif one could identify a robust procedure for constructing priors
on the opponents’ strategies such that the players’ best-response strategies are absolutely
continuous with respect to their beliefs. They do not give an example of such a rule;
moreover, the subsequent literature suggests that it may be very difficult to do so (Nachbar,
1997, 1999, 2001; Miller and Sanchirico, 1997, 1999; Foster and Young, 2001).

A fourth branch of the literature focuses on learning procedures that are based
on backward rather than forward-looking criteria of performance. For example, given
a complete history of play, one might ask whether itwould have been better, on
average, to playx instead ofy in all of those situations where one actually did play
y. If no such substitution would have resulted in a higher average payoff, the history
minimizes conditional regret. There exist a variety of quite simple learning rules that have
this property. Moreover, when every player minimizes conditional regret, the empirical
distribution of play converges with probability one to the set of correlated equilibria of the
game (Foster and Vohra, 1997, 1998, 1999; Foster, 1999; Fudenberg and Levine, 1995,
1999a, 1999b; Hart and Mas-Colell, 2000, 2001).

Like fictitious play, these learning rules are quite simple computationally, and presume
nothing about the players’ prior information about the opponents’ payoffs. Indeed, they
are more satisfactory than fictitious play in the sense that they work for all finite games.
But they are less satisfactory in the sense that they rely on backward-looking criteria of
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