
Automatica 49 (2013) 1683–1692

Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Distributed convergence to Nash equilibria in two-network
zero-sum games✩

B. Gharesifard a,1, J. Cortés b

a Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, IL 61801, USA
b Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA

a r t i c l e i n f o

Article history:
Received 3 April 2012
Received in revised form
20 November 2012
Accepted 17 February 2013
Available online 6 April 2013

Keywords:
Adversarial networks
Distributed algorithms
Zero-sum game
Saddle-point dynamics
Nash equilibria

a b s t r a c t

This paper considers a class of strategic scenarios in which two networks of agents have opposing objec-
tives with regard to the optimization of a common objective function. In the resulting zero-sum game,
individual agents collaborate with neighbors in their respective network and have only partial knowl-
edge of the state of the agents in the other network. For the case when the interaction topology of each
network is undirected, we synthesize a distributed saddle-point strategy and establish its convergence
to the Nash equilibrium for the class of strictly concave–convex and locally Lipschitz objective functions.
We also show that this dynamics does not converge in general if the topologies are directed. This justifies
the introduction, in the directed case, of a generalization of this distributed dynamics which we show
converges to the Nash equilibrium for the class of strictly concave–convex differentiable functions with
globally Lipschitz gradients. The technical approach combines tools from algebraic graph theory, nons-
mooth analysis, set-valued dynamical systems, and game theory.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recent years have seen an increasing interest on networked
strategic scenarios where agents may cooperate or compete with
each other towards the achievement of some objective, interact
across different layers, have access to limited information, and
are subject to evolving interaction topologies. This paper is a
contribution to this body of work. Specifically, we consider a class
of strategic scenarios inwhich two networks of agents are involved
in a zero-sum game. We assume that the objective function can
be decomposed as a sum of concave–convex functions and that
the networks have opposing objectives regarding its optimization.
Agents collaborate with the neighbors in their own network and
have partial information about the state of the agents in the
other network. Such scenarios are challenging because information
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is spread across the agents and possibly multiple layers, and
networks, by themselves, are not the decision makers. Our aim is
to design a distributed coordination algorithm that can be used by
the agents to converge to the Nash equilibrium. Note that, for a
2-player zero-sum game of the type considered here, a pure Nash
equilibrium corresponds to a saddle point of the objective function.
Literature review. Multiple scenarios involving networked systems
and intelligent adversaries in sensor networks, filtering, finance,
andwireless communications (Kim& Boyd, 2008;Wan& Lemmon,
2009) can be cast into the strategic framework described above.
In such scenarios, the network objective arises as a result of the
aggregation of agent-to-agent adversarial interactions regarding
a common goal, and information is naturally distributed among
the agents. The present work has connections with the literature
on distributed optimization and zero-sum games. The distributed
optimization of a sum of convex functions has been intensively
studied in recent years; see e.g. Johansson, Rabi, and Johansson
(2009), Nedic and Ozdaglar (2009a), Wan and Lemmon (2009) and
Zhu and Martínez (2012). These works build on consensus-based
dynamics (Bullo, Cortés, & Martínez, 2009; Mesbahi & Egerstedt,
2010; Olfati-Saber, Fax, &Murray, 2007; Ren & Beard, 2008) to find
the solutions of the optimization problem in a variety of scenarios
and are designed in discrete time. Exceptions include (Wang &
Elia, 2010, 2011) on continuous-time distributed optimization on
undirected networks and (Gharesifard&Cortés, 2012b) on directed
networks.

Regarding zero-sum games, the works (Arrow, Hurwitz, &
Uzawa, 1958; Maistroskii, 1977; Nedic & Ozdgalar, 2009b)
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study the convergence of discrete-time subgradient dynamics
to a saddle point. Continuous-time best-response dynamics for
zero-sum games converges to the set of Nash equilibria for
both convex–concave (Hofbauer & Sorin, 2006) and quasicon-
vex–quasiconcave (Barron, Goebel, & Jensen, 2010) functions.
Under strict convexity–concavity assumptions, continuous-time
subgradient flow dynamics converges to a saddle point (Arrow,
Hurwitz, & Uzawa, 1951; Arrow et al., 1958). Asymptotic con-
vergence is also guaranteed when the Hessian of the objective
function is positive definite in one argument and the function is
linear in the other (Arrow et al., 1958; Feijer & Paganini, 2010).
The saddle-point and learning dynamics reviewed above are not
directly applicable to the problem considered here because the
information about the game is distributed across the networked
scenario and is not centrally available anywhere. The distributed
computation of Nash equilibria in noncooperative games, where
all players are adversarial, is a challenging problem. The algorithm
in Li and Başar (1987) relies on all-to-all communication and does
not require players to know each other’s payoff functions (which
must be strongly convex). In Frihauf, Krstic, and Başar (2012) and
Stankovic, Johansson, and Stipanovic (2012), players are unaware
of their own payoff functions but have access to the payoff value
of an action once it has been executed. These works design dis-
tributed strategies based on extremum seeking techniques to seek
the set of Nash equilibria.
Statement of contributions.We introduce the problemof distributed
convergence to Nash equilibria for two networks engaged in
a strategic scenario. The networks aim to either maximize or
minimize a common objective function which can be written as
a sum of concave–convex functions. Individual agents collaborate
with neighbors in their respective network and have partial
knowledge of the state of the agents in the other one. Our first
contribution is the introduction of an aggregate objective function
for each network which depends on the interaction topology
through its Laplacian and the characterization of a family of points
with a saddle property for the pair of functions. We show the
correspondence between these points and the Nash equilibria of
the overall game. When the graphs describing the interaction
topologies within each network are undirected, the gradients of
these aggregate objective functions are distributed. Building on
this observation, our second contribution is the synthesis of a
consensus-based saddle-point strategy for adversarial networks
with undirected topologies. We show that the proposed dynamics
is guaranteed to asymptotically converge to the Nash equilibrium
for the class of strictly concave–convex and locally Lipschitz
objective functions. Our third contribution focuses on the directed
case. We show that the transcription of the saddle-point dynamics
to directed topologies fails to converge in general. This leads us to
propose a generalization of the dynamics, for strongly connected
weight-balanced topologies, that incorporates a design parameter.
We show that, by appropriately choosing this parameter, the new
dynamics asymptotically converges to theNash equilibrium for the
class of strictly concave–convex differentiable objective functions
with globally Lipschitz gradients. The technical approach employs
notions and results from algebraic graph theory, nonsmooth and
convex analysis, set-valued dynamical systems, and game theory.
As an intermediate result in our proof strategy for the directed
case, we provide a generalization of the known characterization of
cocoercivity of concave functions to concave–convex functions.

The results of this paper can be understood as a generalization
to competing networks of the results we obtained in Gharesifard
and Cortés (2012b) for distributed optimization. This generaliza-
tion is nontrivial because the payoff functions associated with in-
dividual agents now also depend on information obtained from the
opposing network. This feature gives rise to a hierarchy of saddle-
point dynamics whose analysis is technically challenging and re-
quires, among other things, a reformulation of the problem as a
constrained zero-sum game, a careful understanding of the cou-

pling between the dynamics of both networks, and the generaliza-
tion of the notion of cocoercivity to concave–convex functions.
Organization. Section 2 contains preliminaries on nonsmooth
analysis, set-valued dynamical systems, graph theory, and game
theory. In Section 3, we introduce the zero-sum game for two
adversarial networks involved in a strategic scenario and introduce
two novel aggregate objective functions. Section 4 presents our
algorithm design and analysis for distributed convergence to
Nash equilibrium when the network topologies are undirected.
Section 5 presents our treatment for the directed case. Section 6
gathers our conclusions and ideas for future work. Appendix
contains the generalization to concave–convex functions of the
characterization of cocoercivity of concave functions.

2. Preliminaries

We start with some notational conventions. Let R, R≥0, Z, Z≥1
denote the set of real, nonnegative real, integer, and positive
integer numbers, respectively. We denote by ∥ · ∥ the Euclidean
norm on Rd, d ∈ Z≥1, and also use the short-hand notation
1d = (1, . . . , 1)T and 0d = (0, . . . , 0)T ∈ Rd. We let Id denote
the identity matrix in Rd×d. For matrices A ∈ Rd1×d2 and B ∈

Re1×e2 , d1, d2, e1, e2 ∈ Z≥1, we let A ⊗ B denote their Kronecker
product. The function f : X1 × X2 → R, with X1 ⊂ Rd1 ,X2 ⊂ Rd2

closed and convex, is concave–convex if it is concave in its first
argument and convex in the secondone (Rockafellar, 1997). A point
(x∗

1, x
∗

2) ∈ X1 × X2 is a saddle point of f if f (x1, x∗

2) ≤ f (x∗

1, x
∗

2) ≤

f (x∗

1, x2) for all x1 ∈ X1 and x2 ∈ X2. Finally, a set-valued map
f : Rd ⇒ Rd takes elements of Rd to subsets of Rd.

2.1. Nonsmooth analysis

We recall some notions from nonsmooth analysis (Clarke,
1983). A function f : Rd

→ R is locally Lipschitz at x ∈ Rd if there
exists a neighborhoodU of x and Cx ∈ R≥0 such that |f (y)−f (z)| ≤

Cx∥y − z∥, for y, z ∈ U. f is locally Lipschitz on Rd if it is locally
Lipschitz at x for all x ∈ Rd and globally Lipschitz on Rd if for all
y, z ∈ Rd, there exists C ∈ R≥0 such that |f (y)− f (z)| ≤ C∥y− z∥.
Locally Lipschitz functions are differentiable almost everywhere.
The generalized gradient of f is

∂ f (x) = co

lim
k→∞

∇f (xk) | xk → x, xk ∉ Ωf ∪ S

,

where Ωf is the set of points where f fails to be differentiable and
S is any set of measure zero.

Lemma 2.1 (Continuity of the Generalized Gradient Map). Let f :

Rd
→ R be a locally Lipschitz function at x ∈ Rd. Then the set-valued

map ∂ f : Rd ⇒ Rd is upper semicontinuous and locally bounded at
x ∈ Rd and moreover, ∂ f (x) is nonempty, compact, and convex.

For f : Rd
× Rd

→ R and z ∈ Rd, we let ∂xf (x, z) denote the
generalized gradient of x → f (x, z). Similarly, for x ∈ Rd, we let
∂z f (x, z) denote the generalized gradient of z → f (x, z). A point
x ∈ Rd with 0 ∈ ∂ f (x) is a critical point of f . A function f : Rd

→ R
is regular at x ∈ R if for all v ∈ Rd, the right directional derivative
of f , in the direction of v, exists at x and coincides with the general-
ized directional derivative of f at x in the direction of v.We refer the
reader to Clarke (1983) for definitions of these notions. A convex
and locally Lipschitz function at x is regular (Clarke, 1983, Proposi-
tion 2.3.6). The notion of regularity plays an important role when
considering sums of Lipschitz functions.

Lemma 2.2 (Finite Sum of Locally Lipschitz Functions). Let {f i}ni=1 be
locally Lipschitz at x ∈ Rd. Then ∂(

n
i=1 f

i)(x) ⊆
n

i=1 ∂ f i(x), and
equality holds if f i is regular for i ∈ {1, . . . , n}.

A locally Lipschitz and convex function f satisfies, for all x, x′
∈

Rd and ξ ∈ ∂ f (x), the first-order condition of convexity:

f (x′) − f (x) ≥ ξ · (x′
− x). (1)
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