
A polynomial-time Nash equilibrium algorithm for repeated games

Michael L. Littmana,*, Peter Stoneb

aDepartment of Computer Science, Rutgers University, Piscataway, NJ 08854-8019, USA
bDepartment of Computer Sciences, The University of Texas at Austin, Austin, TX 78712-0233, USA

Available online 2 October 2004

Abstract

With the increasing reliance on game theory as a foundation for auctions and electronic commerce, efficient algorithms for

computing equilibria in multiplayer general-sum games are of great theoretical and practical interest. The computational

complexity of finding a Nash equilibrium for a one-shot bimatrix game is a well-known open problem. This paper treats a

related but distinct problem—that of finding a Nash equilibrium for an average-payoff repeated bimatrix game, and presents a

polynomial-time algorithm. Our approach draws on the well-known bfolk theoremQ from game theory and shows how finite-

state equilibrium strategies can be found efficiently and expressed succinctly.

D 2004 Elsevier B.V. All rights reserved.

PACS: F.2.m

Keywords: Repeated games; Complexity analysis; Nash equilibrium; Computational game theory

1. Introduction

The Nash equilibrium is one of the most important

concepts in game theory, forming the basis of much

recent work in multiagent decision making and

electronic marketplaces. As such, efficiently comput-

ing Nash equilibria is one of the most important

problems in computational game theory.

The central result of this paper is a polynomial-

time algorithm for computing a Nash equilibrium for

repeated two-player (bimatrix) games, under the

average-payoff criterion. This result stands in contrast

to the problem of computing a Nash equilibrium in a

one-shot game, the complexity of which remains an

important and long-standing open problem [12]. The

idea behind our algorithm echoes that of the well-

known bfolk theoremQ [11], which shows how the

notion of threats can stabilize a wide range of payoff

profiles in repeated games. While the folk theorem

provides a constructive method for identifying Nash

equilibria in repeated games, the contribution of this

paper is to show how the threat idea can be used to

create a computationally efficient equilibrium-finding

algorithm. While drawing heavily on the folk theo-

rem, our result is not an immediate corollary. In fact,

while there are folk theorems for n-player repeated

0167-9236/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.dss.2004.08.007

* Corresponding author.

E-mail addresses: mlittman@cs.rutgers.edu (M.L. Littman)8

pstone@cs.utexas.edu (P. Stone).

URLs: http://www.cs.rutgers.edu/~mlittman,

http://www.cs.utexas.edu/~pstone.

Decision Support Systems 39 (2005) 55–66

www.elsevier.com/locate/dsw

games, our polynomial-time algorithm is only valid

for n=2.

In the rest of the paper, we formally describe the

problem (Section 2) and our algorithm for solving it

(Section 3), and conclude with a set of illustrative

examples (Section 4).

2. Problem statement

A repeated bimatrix game is played by two players,

1 and 2, each with a set of action choices of size n1

and n2, respectively. The game is played in rounds,

with the two players simultaneously making a choice

of action at each round. If Player 1 chooses action

1Vi1Vn1 and Player 2 chooses 1Vi2Vn2, they receive

payoffs of Pi1i2
1 and Pi2i1

2 , respectively.1 In a repeated

game, players select their actions, possibly stochasti-

cally, via a strategy—a function of the history of their

interactions.

The objective of each player in a repeated game is

to adopt a strategy that maximizes its expected

average payoff (limit of the means criterion). A pair

of strategies is a Nash equilibrium if each strategy is

optimized with respect to the other—neither player

can improve its average payoff by changing strategies

unilaterally [10].

As a running example in this paper, we use the

well-known Iterated Prisoner’s Dilemma to illustrate

and motivate our algorithm. In this repeated bimatrix

game, on each round, each player can either cooperate

(Action 1) or defect (Action 2). The two players use

the same payoff matrix, P1 ¼ P2 ¼
�
3 0

5 1

�
.

One pair of equilibrium strategies in the Prisoner’s

Dilemma is for both players to defect in every round.

The average payoff in this case is 1 for both players.

These strategies are in equilibrium because a player

facing an balways defectQ opponent will receive a

payoff of zero for every round in which it selects the

cooperate action; the best respond to balways defectQ
is to always choose defect.

This paper considers the following computational

problem. Given a game specified by payoff matrices P1

and P2, return a pair of strategies that constitutes a Nash

equilibrium for the average-payoff repeated bimatrix

game. The running time of the algorithm should be a

polynomial function of the size of the input.

To fully specify the equilibrium-computation prob-

lem, we must be concrete about the input and output

representations. The input representation is relatively

straightforward. For (p,q) a{(1,2),(2,1)}, the func-

tion Pp is an np�nq matrix. To bound the size of the

numbers in these matrices, we assume they are

rational numbers, specified as integer numerator and

natural denominator of no more than k bits. So, the

running time of our algorithm needs to be a

polynomial function of n1, n2, and k.

Note that the representation size of an integer is

roughly its logarithm in base two and the representa-

tion size of a rational number is the sum of the sizes of

its numerator and denominator. A polynomial-size

number is one with representation size bounded by a

polynomial function of the input size. Multiplying,

dividing, adding, or subtracting two polynomial-size

rational numbers produces a polynomial-size result, as

does solving a polynomial-size system of linear

equations or linear program [14].

The output of an equilibrium computation is a pair

of strategies. It is well known that every bimatrix game

has at least one pair of strategies that is a Nash

equilibrium. However, strategies in repeated games can

be infinitely large objects mapping the interaction

history to action choices, so it is necessary to use some

finite representation for strategies when computing

Nash equilibria. In this paper, we consider two strategy

representations: classical finite-state machines and a

counting node extension in which actions can be

repeated a prespecified number of times. Both repre-

sent finite state strategies, but the counting-node

machine can result in exponentially smaller represen-

tations, as described next.

A finite-state-machine strategy for a player p

against an opponent q is a labeled directed graph.

One node of the graph is the designated starting node.

Each node of the graph is labeled with a probability

distribution over action choices for p. Outgoing edges

are labeled with joint actions for (p,q), with no two

edges from a single node sharing the same label. One

outgoing edge for each node is labeled b*Q to

designate a default edge, taken if the joint action of

players p and q does not match any of the other labels.

1 For cleanliness of notation, we deviate from common practice

and write matrices so that a player always chooses the row of its

own payoff matrix, while the opponent always chooses the column.

M.L. Littman, P. Stone / Decision Support Systems 39 (2005) 55–6656

https://isiarticles.com/article/79419

