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I consider n-person normal form games where the strategy set of each player is a non-
empty compact convex subset of an Euclidean space, and the payoff function of player i is
continuous in joint strategies and continuously differentiable and concave in the player i’s
strategy. No further restrictions (such as multilinearity of the payoff functions or the
requirement that the strategy sets be polyhedral) are imposed. I demonstrate that the
graph of the Nash equilibrium correspondence on this domain is homeomorphic to the
space of games. This result generalizes a well-known structure theorem in [Kohlberg, E.,
Mertens, J.-F., 1986. On the strategic stability of equilibria. Econometrica 54, 1003–
1037]. It is supplemented by an extension analogous to the unknottedness theorems in
[Demichelis S., Germano, F., 2000. Some consequences of the unknottedness of the Walras
correspondence. J. Math. Econ. 34, 537–545; Demichelis S., Germano, F., 2002. On (un)knots
and dynamics in games. Games Econ. Behav. 41, 46–60]: the graph of the Nash equilibrium
correspondence is ambient isotopic to a trivial copy of the space of games.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

This paper contributes to the study of the geometry of Nash equilibria. The existing studies of the geometry of Nash
equilibria usually consider mixed strategy Nash equilibria on the domain of finite games, i.e. games with finitely many pure
strategies. This framework, however, is inadequate for modelling a large number of interesting strategic interactions. Market
games, Cournot oligopoly games, location games are examples of games with a continuum of pure strategies and non-linear
payoffs. In such games, it is the set of equilibria in pure rather than mixed strategies that is of particular importance to the
respective applications. The purpose of this paper is to extend the study of the geometry of Nash equilibria on a sufficiently
rich domain of games that includes these and similar types of games.

The geometry of Nash equilibria is best understood through the properties of the graph of the equilibrium correspon-
dence. A number of topological characterizations of the graphs of various equilibrium correspondences are well known
in the literature. Thus Kohlberg and Mertens (1986) show that the graph of the Nash equilibrium correspondence on the
domain of finite games is homeomorphic to an Euclidean space. This result is a game-theoretic analogue of the structure
theorem in Balasko (1978) who shows that the graph of the Walrasian equilibrium correspondence is homeomorphic to an
Euclidean space. A topological characterization of the pseudo-equilibrium manifold in economies with incomplete markets
is given in Zhou (1997). In Demichelis et al. (2004) the graph of subgame perfect equilibrium correspondence is shown to
be homeomorphic with the underlying space of perfect information games.

This paper provides a topological characterization of the Nash equilibrium correspondence in a very general setup. I con-
sider the space of normal form games as parameterized by the payoff functions. It is assumed that the strategy set of each
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player is a non-empty compact convex subset of an Euclidean space, and the payoff function of player i is continuous in
joint strategies and concave and continuously differentiable in the own strategies of player i. No further restrictions (such
as multilinearity of the payoff functions or the requirement that the strategy sets be polyhedral) are imposed. It is demon-
strated that the graph of the Nash equilibrium correspondence on this domain is homeomorphic to the underlying space
of games. Furthermore, the constructed homeomorphism preserves the subspace of finite games, implying (the first part of)
the structure theorem in Kohlberg and Mertens (1986) as a corollary.

Multiplicity of equilibria is the main reason why the topological characterizations such as the one in the present paper
are not easy to obtain. Even in one-player games as considered in Section 2.1, where Nash equilibrium is simply a maximum
of a payoff function, the characterization is non-trivial due to the possibility of multiple maxima. And in games with two
or more players there may be many Nash equilibria even if the best responses are always unique. The second source of
multiplicity of equilibria is the strategic interrelatedness of the players’ best responses.

It turns out that the geometry of Nash equilibrium in decision problems (i.e. one-player games) is similar to the geom-
etry of subgame perfect equilibrium on the domain of perfect information games (see Demichelis et al., 2004). Indeed, the
only source of multiplicity of equilibria in such games is the indeterminateness of the best response due to indifferences in
the preferences over terminal outcomes. In both cases the equilibrium correspondence is almost everywhere a continuous
single-valued function that occasionally makes a vertical step and even a small perturbation of the ambient space is suffi-
cient to make the graphs of these correspondences look like the graphs of single-valued functions. These results cannot be
extended to games with many players. In the general case, only a sufficiently large perturbation of the ambient space can
deform the graph of the Nash equilibrium correspondence to a graph of a single-valued map.

In Section 3 I develop an extension of the structure theorem in the spirit of the so-called unknottedness theorem in
Demichelis and Germano (2000, 2002). I show that not only does the graph of the Nash equilibrium correspondence have
an intrinsic structure of the space of games, but it can be continuously deformed within its ambient space (games times
strategies) to a graph of a single-valued function. It follows as a corollary that the homeomorphism of the graph of the Nash
equilibrium correspondence with games is proper homotopic with the projection map, a result analogous to the second part
of the structure theorem in Kohlberg and Mertens (1986).

For finite games the unknottedness result is known to have a number of important implications for the dynamics whose
rest points are equilibria. For example, it implies that any two Nash dynamics are homotopic within the set of Nash dynam-
ics and that the degree and the index of any two equilibria are equal. Extending these results to larger domains of games
such as that studied in this paper is an interesting direction for future research.

2. The structure theorem

It is well known that games have many Nash equilibria. It is in fact the multiplicity of equilibria that makes the struc-
ture theorem a non-trivial result. One can distinguish two sources of multiplicity of equilibria, the first source being the
multiplicity of the best responses. This source of multiplicity is present even in decision problems (i.e. one-player games).
And in games with two or more players there may be many Nash equilibria even if the best responses are always unique.
The second source of multiplicity of equilibria is the strategic interrelatedness of the players’ best responses. We shall be
dealing with each source of multiplicity of equilibria in turn, first considering one-player games and then turning to the
general case.

2.1. The one-player case

There is a set X of strategies that is assumed to be a non-empty, concave and convex subset of a finite-dimensional
Euclidean space. The set X will be fixed, and the one-player games will be parameterized by the payoff functions u : X → R.
Each payoff function is assumed to be continuous and concave. Let U be the collection of all such functions. A Nash
equilibrium of a (one-player) game u is a strategy that maximizes the payoff function u on the set X . The Nash equilibrium
correspondence assigns to each payoff function u in U the set of Nash equilibria of the game u. Thus the graph of the
Nash equilibrium correspondence is the set

N = {
(u, x) ∈ U × X | x maximizes u on X

}
.

For a given function u ∈ U the set of maximizers of u is a convex set, and it is a singleton if u is strictly convex.
Thus the Nash equilibrium correspondence is almost always a continuous single-valued function that occasionally makes a
vertical step. A vertical step occurs whenever a payoff function has a flat section that produces multiple maxima. Panel (a)
of Fig. 1 depicts the Nash equilibrium correspondence on the domain of all linear payoff functions when X is an interval
[−1,1].

Let η :N → U be defined by the equation η(u, x) = u + lx , where lx is a linear function given by the formulae lx(z) =
〈x, z〉. Here 〈x, z〉 denotes the inner product of the vectors x and z. Notice that the function η preserves the linearity of the
payoff function: if u is a linear function, so is η(u, x).

To illustrate how the map η works, consider the case where X = [−1,1] and consider the collection of all linear functions
{la} as parameterized by the slope a. The graph of the Nash equilibrium correspondence on the domain of all linear functions
is depicted in panel (a) of Fig. 1. The Nash equilibrium correspondence is single-valued at all points except a = 0 where it
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