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An individual’s learning rule is completely uncoupled if it does not depend directly on
the actions or payoffs of anyone else. We propose a variant of log linear learning that
is completely uncoupled and that selects an efficient (welfare-maximizing) pure Nash
equilibrium in all generic n-person games that possess at least one pure Nash equilibrium.
In games that do not have such an equilibrium, there is a simple formula that expresses
the long-run probability of the various disequilibrium states in terms of two factors: (i) the
sum of payoffs over all agents, and (ii) the maximum payoff gain that results from a
unilateral deviation by some agent. This welfare/stability trade-off criterion provides a novel
framework for analyzing the selection of disequilibrium as well as equilibrium states in
n-person games.

© 2012 Elsevier Inc. All rights reserved.

1. Learning equilibrium in complex interactive systems

Game theory has traditionally focused on situations that involve a small number of players. In these environments
it makes sense to assume that players know the structure of the game and can predict the strategic behavior of their
opponents. But there are many situations involving huge numbers of players where these assumptions are not particularly
persuasive. Commuters in city traffic are engaged in a game because each person’s choice of route affects the driving time
of many other drivers, yet it is doubtful that anyone ‘knows the game’ or fully takes into account the strategies of the
other players as is usually posited in game theory. Other examples include decentralized procedures for routing data on the
internet, and the design of information sharing protocols for distributed sensors that are attempting to locate a target.

These types of games pose novel and challenging questions. Can such systems equilibrate even though agents are un-
aware of the strategies and behaviors of most (or perhaps all) of the other agents? What kinds of adaptive learning rules
make sense in such environments? How long does it take to reach equilibrium assuming it can be reached at all? And what
can be said about the welfare properties of the equilibria that result from particular learning rules?

In the last few years the study of these issues has been developing rapidly among computer scientists and distributed
control theorists (Papadimitriou, 2001; Roughgarden, 2005; Mannor and Shamma, 2007; Marden and Shamma, 2008, Marden
et al. 2009a, 2009b; Asadpour and Saberi, 2009; Shah and Shin, 2010). Concurrently game theorists have been investigating
the question of whether decentralized rules can be devised that converge to Nash equilibrium (or correlated equilibrium) in
general n-person games (Hart and Mas-Colell 2003, 2006; Foster and Young 2003, 2006; Young, 2009; Hart and Mansour,
2010). A related question is whether decentralized learning procedures can be devised that optimize some overall measure
of performance or welfare without necessarily inducing equilibrium (Arieli and Babichenko, 2011; Marden et al., 2011). This
is particularly relevant to problems of distributed control, where measures of system performance are given (e.g., the total
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power generated by a windfarm, the speed of data transmission in a communications network), and the aim is to design
local response functions for the components that achieve maximum overall performance.

Much of the recent research on these topics has focused on potential games, which arise frequently in applications (Mar-
den and Shamma, 2008; Marden et al., 2009a, 2009b). For this class of games there exist extremely simple and intuitively
appealing learning procedures that cause the system to equilibrate from any initial conditions. A notable example is logit
learning, in which an agent chooses actions with log probabilities that are a linear function of their payoffs. In this case
equilibrium occurs at a local or global maximum of the potential function. However, the potential function need not mea-
sure the overall welfare of the agents, hence the equilibrium selected may be quite inefficient. This is a well-known problem
in congestion games for example. The problem of inefficient equilibrium selection can be overcome by a congestion pricing
scheme, but this requires some type of centralized (or at least not fully decentralized) mechanism for determining the price
to charge on each route (Sandholm, 2002).

The contribution of this paper is to demonstrate a simple learning rule that incorporates log linear learning as one
component, and that selects an efficient equilibrium in any game with generic payoffs that possesses at least one pure Nash
equilibrium. (An equilibrium is efficient if there is no other equilibrium in which someone is better off and no one is worse
off.) By ‘select’ we mean that, starting from arbitrary initial conditions, the process is in an efficient equilibrium in a high
proportion of all time periods. Our learning rule is completely uncoupled, that is, the updating procedure does not depend
on the actions or payoffs of anyone else. Thus it can be implemented even in environments where players know nothing
about the game, or even whether they are in a game. All they do is react to the pattern of recent payoffs, much as in
reinforcement learning (though the rule differs in certain key respects from reinforcement learning).

Our notion of selection – in equilibrium a high proportion of the time – is crucial for this result. It is not true that the
process converges to equilibrium or even that it converges to equilibrium with high probability. Indeed it can be shown that,
for general n-person games, there exist no completely uncoupled rules with finite memory that select a Nash equilibrium
in this stronger sense (Babichenko, 2010a; see also Hart and Mas-Colell, 2003, 2006).

The learning rule that we propose has a similar architecture to the trial and error learning procedure of Young (2009),
and is more distantly related to the ‘learning by sampling’ procedure of Foster and Young (2006) and Germano and Lugosi
(2007).1 An essential feature of these rules is that players have two different search modes: (i) deliberate experimentation,
which occurs with low probability and leads to a change of strategy only if it results in a higher payoff than the current
aspiration level; (ii) random search, which leads to a change of strategy that may or may not have a higher payoff. Young
(2009) demonstrates a procedure of this type that selects pure Nash equilibria in games where such equilibria exist and
payoffs are generic. However this approach does not provide a basis for discriminating between pure equilibria, nor does it
characterize the states that are selected when such equilibria do not exist.

In contrast to these earlier papers, the learning rule described here permits a sharp characterization of the equilibrium
and disequilibrium states that are favored in the long run. This results from several key features that distinguish our ap-
proach from previous ones, including Young (2009). First, we do not assume that agents invariably accept the outcome of
an experiment even when it results in a strict payoff improvement: acceptance is probabilistic and is merely increasing in
the size of the improvement. Second, players accept the outcome of a random search with a probability that is increasing in
its realized level of payoff rather than the gain in payoff. Third, the acceptance functions are assumed to have a log linear
format as in Blume (1993, 1995). These assumptions define a learning process that selects efficient pure Nash equilibria
whenever pure Nash equilibria exist. Moreover when such equilibria do not exist we obtain a precise characterization of
the disequilibrium states that have high probability in the long run. These states represent a trade-off between welfare and
stability: the most likely disequilibrium states are those that maximize a linear combination of: (i) the total welfare (sum
of payoffs) across all agents and (ii) the payoff gain that would result from a deviation by some agent, where the first is
weighted positively and the second negatively.

2. The learning model

We shall first describe the learning rule informally in order to highlight some of its qualitative features. At any given
point in time an agent may be searching in one of two ways depending on his internal state or ‘mood’. In the content state
an agent occasionally experiments with new strategies, and adopts the new strategy with a probability that increases with
the associated gain in payoff. (This is the conventional exploration/exploitation form of search.) In the discontent state an
agent flails around, trying out randomly chosen strategies every period. The search ends when he spontaneously accepts
the strategy he is currently using, where the probability of acceptance is an increasing function of its realized payoff. The
key differences between these modes of search are: (i) the rate of search (slow for a content agent, fast for a discontent
agent); and (ii) the probability of accepting the outcome of the search. In the content state the probability of acceptance is
determined by the change in payoff, whereas in the discontent state the probability of acceptance is determined by the level
of payoff. The rationale for the latter assumption is that a discontent agent will typically try out many different strategies

1 Another distant relative is the aspiration-based learning model of Karandikar et al. (1998). In this procedure each player has an endogenously generated
aspiration level that is based on a smoothed average of his prior payoffs. He changes strategy with positive probability if his current payoff falls below his
current aspirations. Unlike the present method, this procedure does not necessarily lead to Nash equilibrium behavior even in 2 × 2 games.
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