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In this paper a spatial downscaling method is explored for generating appropriate farm scale digital soil maps.
The digital soil map product to be downscaled is an Australian national extent soil carbon map (100 m grid res-
olution). Taking into account the associated prediction uncertainties of this map, we used a simulation approach
based on Gaussian random fields to generate plausible mapping realisations that were in turn downscaled to
10 m resolution for a farm in North-western NSW, Australia. We were able to derive both a downscaled map
of soil carbon and associated prediction variance with this approach. Building further upon this development,
we then incorporated a bias correction step into the spatial downscaling procedure which permits the inclusion
of field observations as a way to moderate the downscaling results to better reflect actual conditions on the
ground. Based on an independent validation dataset, it was found that incorporating field observations increase
the concordance correlation coefficient to 0.8 from 0.2. This relatively lower correlation achieved using spatial
downscaling alone was due to the national scale mapping for the study area being positively biased in the area
of interest. It was found that downscaling that incorporates observational data wasmarginally better if not com-
parable to using a point-based digital soil mapping approach. The advantage of spatial downscaling is that it can
be implemented in situations of data scarcity. This will be ideal for on farm soil monitoring in situations where
detailed soil mapping is initially not available. For example, soil carbon auditing schemes requiring prior soil in-
formation for implementation of design-based soil sampling could potentially be universally applied with such a
spatial downscaling approach.
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1. Introduction

Contextualizing the sampling theory established by De Gruijter et al.
(2015), follow upwork by De Gruijter et al. (2016) proposed an efficient
and optimizable soil sampling protocol for the unbiased estimation of on
farm soil carbon stocks. Their interest was the estimation of whole farm
soil carbon stocks with sufficient statistical confidence. Such information
is necessary for the establishment and ongoingmonitoring of soil carbon.
Unbiased estimation of on-farm carbon stocks is also necessary in the
broader context of carbon inventory and participation of agriculture sec-
tor in the carbon economy (Antle et al., 2003). Coincidentally, in addition
to the environmental benefits associated with sequestration of carbon
into soils, there are foreseeable economic benefits for farming communi-
ties too (Stockmann et al., 2013).

A design-based soil sampling approach, the ospats algorithm from
De Gruijter et al. (2015) enables one to use prior information by way

of existing soil carbon mapping (and associated prediction variances)
to derive an optimal number and spatial configuration of strata, and ul-
timately an optimal number of samples to collect from a farm. The focus
of this particular research is in regards to the prior information that is
required by ospats – that is, the mapping of soil carbon and associated
uncertainties. For universality of application, ospats needs relevant
farm scale digital soil map of carbon stock and associated prediction un-
certainties. With the exception of some farms, most agricultural land-
holdings will not likely have an established digital spatial information
system. It is proposed in this research that such information may be ob-
tainedmore-or-less globally by exploiting the availability of global and/
or national digital soil mapping products.

Throughout theworld there has been an upsurge of digital soil map-
ping projects (Minasny andMcBratney, 2016). This is duemainly to en-
abling technologies in quantitative methodologies and geographic
information systems, in addition to a global need of relevant spatial
soil information systems to address critical environment issues of
which soil is manifold. The vanguard of such projects has been the
GlobalSoilMap project (Sanchez et al., 2009; Arrouays et al., 2014),
which set as the ambitious goal to use digital soil mapping to map key
soil attributes at 100 m spatial resolution and specified depth intervals
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to 2 m (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–
200 cm) across the entire ice-free land surface of the world. Working
in parallel with that project or inspired from some of its methodological
approaches, similar very large extent digital soil mapping projects have
also resulted throughout the world.

Such large spatial extent digital soil mapping products are invaluable
for aiding the decision-making process at the spatial scales they were
intended for.However, they arenotparticularly relevant for considering is-
sues at the farmscale. In otherwords, the observed spatial variability at the
farm scale is not sufficiently captured in nationally or regionally calibrated
models and the resultant digital soil maps. This can often be simply amat-
ter of grid cell resolution being too coarse formeaningful on farm analyses.

In order to create digital soil maps relevant to the farm scale in the
absence of sufficient data, one possible option to consider is spatial
downscaling. Thismeans the spatial disaggregation of the nationalmap-
ping using a statistical model and a library of environmental covariates
thatwill help in defining the spatial variability of the target variable. The
implicit assumption here is that the covariate information is strongly re-
lated to the target variable, which is being derived at the fine scaled res-
olution. This general statistical downscaling approach is embodied is the
dissever algorithm (Malone et al., 2012) which itself is a generalization
of the linear downscaling algorithm proposed by Liu and Pu (2008).
Poggio and Gimona (2015) used a modified dissever approach which
considers a correction step when downscaling climate model outputs.

The dissever algorithm was originally parameterized for inclusion of
the uncertainties of the map to be downscaled. The underlying model
within dissever is a weighted generalized additive model (Hastie and
Tibshirani, 1990). In addition to allowing one to investigate non-linear re-
lationship between target variable and covariates, in this model, the un-
certainties of the input data (the coarse map) are used as weighting
factors (inverse weighted) in the nonlinear fitting function (Malone et
al., 2012). Despite this generalization, incorporating the prediction uncer-
tainties did not ultimately mean they were propagated through to the
downscaled outputs directly. In fact, the only measure of uncertainty as-
sociated with downscaling fromMalone et al. (2012) was that associated
with the deviation frommass balance between coarse scalemapping and
associated downscaled mapping. The quantification of uncertainties is
necessary for obvious reasons of assessing the reliability of mapping. Im-
portantly for soil carbon stock auditing and using ospats specifically, the
magnitude of the prediction uncertainties determines the spatial configu-
ration of the sampling strata and optimal sample number.

Subsequently, this research is focused on the delivery of relevant
farm scale digital soil mapping of carbon via a spatial downscaling ap-
proach. A key question of this research is how to efficiently take into ac-
count the prediction uncertainties of the national mapping so that they
are in turn propagated through to the downscaled mapping in addition
to the uncertainty estimated from downscaling. Exploring further the
work of Poggio and Gimona (2015) a second research question is, to
what effect does incorporating field observations into the downscaling
processwhile simultaneously taking into consideration the uncertainties
of the national mapping? For the first questionwemay hypothesize that
by explicitly taking into account the prediction uncertainties within the
modeling process, we may expect an associated prediction variance
with the downscaled mapping, which would be an ideal outcome espe-
cially for universal implementation of ospats. Regarding the second ques-
tion, from results obtained by Poggio and Gimona (2015) we would
expect the bias corrected downscaled mapping will reflect the more
present-day spatial pattern of soil carbon variation, and have relatively
lower uncertainty than the mapping created from downscaling alone.

2. Material and methods

2.1. Methodological overview

First we describe the study area that is under investigation, and then
outline the various data that has been collected and subsequently used.

We then detail a simple approach for generating plausible realisations
from national scale mapping conditioned to the spatial and statistical
properties of these mapping. This is followed by description of a spatial
downscaling approach of the simulated national scale mapping outputs
for generating relevant farm scale predictions and associated uncertain-
ty. The spatial downscaling entails approaches pertaining to with and
without correction based on the usage of point observation data. For
comparisons, we compare downscaled products with those derived
from a point-based digital soil mapping approach. Validation of all out-
puts in this investigation is performed using an independent data set
from the area under investigation.

2.2. Study area and data acquisition

The farm under investigation in this study is the University of Syd-
ney owned and managed E.J. Holtsbaum Research Station, “Nowley”
(31.35°S 150.11°E). Situated in the highly agriculturally productive Liv-
erpool Plains region in northwest NSW(Fig. 1), Nowley (approximately
2300 ha) is run as a mixed farming enterprise centered around crops of
wheat, barley and canola in winter, sorghum and sunflower in summer,
and a cattle herd of breeders, replacement heifers and bulls. Nowley has
a combination of fertile basaltic soils together with more challenging to
manage soil types that are poorly drained and with considerably high
amounts of subsoil sodium. A more comprehensive description of the
region and Nowley farm can be found at (Stockmann et al., 2016).

At the present time, nationalmapping of soil carbon (that is publically
available and downloadable) pertains to total soil carbon concentration.
This data is available via the repository of the Australian Soil and
Landscape Grid (http://www.clw.csiro.au/aclep/soilandlandscapegrid/).
Technical information regarding the Australian Soil and Landscape
grid can be found in Grundy et al. (2015). This national scale digital
soil mapping is based on the GlobalSoilMap specification resolved to a
100 m grid cell resolution, and is available as layers corresponding to
depth intervals of: 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, and 60–
100 cm. Using a boundary extent of theNowley Farmwe clipped the na-
tional mapping which included the lower and upper bounds of a 90%
prediction interval, and the predicted values as generated by scorpan
modeling. In this study, because soil sampling was based on a 0–
7.5 cm depth interval, we extracted only the mapping corresponding
to 0–5 cm and 5–15 cm. With the extracted mapping we set about de-
riving mapping that corresponded to 0–7.5 cm which is based on col-
lected topsoil samples. This was facilitated using the mass preserving
spline depth function described in Bishop et al. (1999) for each 100 m
grid cell. This procedurewas done for the predictions and the associated
lower and upper prediction intervals. After this, using the 90% lower
and upper prediction limitswe estimated the variance and standard de-
viation of the predictions the same way as in Malone et al. (2014).

Data collected from Nowley included a number of environmental
layers related to topography and gamma radiation. The topographic
data were collected (and later mapped) by Tranter (2005) by ground
survey using an all-terrain vehicle with attached Ashtech Real-Time Ki-
netic Global Positioning System (RTK GPS). Driven across the farm in
20m swaths, positional datawith coupled elevation datawere recorded
every 3 s. After the completion of the survey, a series of post-processing
steps were performed followed by interpolation to create a map of ele-
vation. Interpolation was performed via local ordinary kriging onto a
regularly spaced 10 m grid across the whole farm. Further processing
of the 10 m elevation model entailed calculation of a number of terrain
derivatives. In this particular study the following terrain derivatives
were used: slope gradient, terrain wetness index, and multi-resolution
valley bottom flatness index. High resolution gamma radiometric map-
pingwas collected via aerial survey. Australia has a continental coverage
of remotely-sensed radiometric data at 100 m grid resolution, but the
raw data that contributes to this mapping is composed of a patchwork
of aerial surveys that range in information content (Minty et al.,
2009). In the area where this study is based, the information content
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