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a b s t r a c t

Offshore wind farm is an emerging source of renewable energy, which has been shown to
have tremendous potential in recent years. In this blooming area, a key challenge is that
the preventive maintenance of offshore turbines should be scheduled reasonably to satisfy
the power supply without failure. In this direction, two significant goals should be consid-
ered simultaneously as a trade-off. One is to maximise the system reliability and the other
is to minimise the maintenance related cost. Thus, a non-linear multi-objective program-
ming model is proposed including two newly defined objectives with thirteen families of
constraints suitable for the preventive maintenance of offshore wind farms. In order to
solve our model effectively, the nondominated sorting genetic algorithm II, especially for
the multi-objective optimisation is utilised and Pareto-optimal solutions of schedules
can be obtained to offer adequate support to decision-makers. Finally, an example is given
to illustrate the performances of the devised model and algorithm, and explore the rela-
tionships of the two targets with the help of a contrast model.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction - motivation

The wind energy capacity currently installed in the European Union (EU) can produce 284 TWh of electricity in an average
wind year, which is enough to cover 10:2% of the EU’s total electricity consumption.1

At present, offshore wind power accounts for almost 1:1% of the EU’s total capacity in the electricity consumption. Obvi-
ously, offshore wind farms are emerging to be one of the driving sources of energy in the green power world. In the US in
May 2014, the U.S. Department of Energy awarded three multi-million demonstration projects planned for the New Jersey,
Oregon and Virginia coasts. In theory, the potential benefit and challenge are tremendous [39]. In Germany, the ambitious
Energiewende (energy transition) programme hopes to generate at least 35% of its electricity from the green renewable
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energy by 2020, and by 2050 the share is expected to surpass 80%. Again, offshore wind farms in north coastal parts of Ger-
many play a key role in this direction [42]. Last, but not least, it should also be mentioned the Chinese government is giving
considerable weight to exploiting this environmentally friendly resource of energy, particularly along the south-eastern part
of its coast line [7].

Maintenance is classified into two main categories: the corrective and the preventive maintenance. The former one is usu-
ally performed after a system failure or breakdown while the latter one corresponds to the scheduled actions, which are per-
formed while the system is still operational. Generally speaking, the preventive maintenance (PM) is more beneficial as it may
prevent serious losses due to unpredicted failures [32].

This paper is aimed at the PM scheduling of offshore wind farms. For generalised power systems, the primary goal of the
PM is to avoid or mitigate failure consequences of the electrical and mechanical parts of the system caused by fatigue cumu-
lative damages and corrosion resistance degradations. PM is able to prevent faults effectively either before they occur or
before they develop into major defects. Scheduling means to determine the most satisfied arrangement for the downtime
of elements in offshore wind farms that need to be preventively maintained. Hence, our PM scheduling of offshore wind
farms is transformed to an interesting optimisation problem, which is useful to different decision-makers in the green
energy world.

The rest of the paper is organized as follows. In Section 2, a discussion about the new reliability and economic criteria is
provided. Section 3 introduces and reviews the algorithm used for solving our problem. A non-linear multi-objective pro-
gramming model with thirteen families of constraints for the PM scheduling of offshore wind farms is formulated, as well
as its contrast model using the squares of net reserves minimisation objective in Section 4. Then, the technical parts of Non-
dominated Sorting Genetic Algorithm II (NSGA-II) are presented in Sections 5 and Appendix A. The effectiveness and perfor-
mance of the proposed and contrast models are illustrated by presenting a numerical example in Section 6, and the results
are analysed and compared from three main respects.

2. Objective functions

Reliability and economic criteria are the two most popular objectives for the maintenance optimisation models of power
systems according to the literature to date. However, only a few studies have investigated the maintenance problem partic-
ularly designed for the offshore wind energy sector. In the following subsections, an analysis of the two criteria is provided.

2.1. Reliability criterion

In terms of the reliability criterion, there are commonly two mainstream definitions. The first one is related to the
required net power reserves to provide the stability in meeting the customer demand, and the second one indicates the devi-
ation of the net power reserves, i.e., the reserve margin. The net power reserve is the balance of the gross reserve after
deducting the maintenance loss. For the first type of the reliability measure, Kralj and Petrović [27] suggested that the
net reserve generation can be maximised as an optimality criterion. Later, Conejo et al. [6] made a further development
and first defined the reliability as the net reserve being divided by the gross reserve. This formulation soon became a classical
objective for the maximisation of PM scheduling models. Canto [3] employed it to solve the PM scheduling problem of power
plants, and then Canto and Romero [4] extended its application to the problems associated with wind farms integrated
power plants.

For the second type of reliability perspective, Egan et al. [16] first proposed that the minimisation of the sum of the
squares of the reserves (SSR) would prevent the large variations in the net power reserves of each time period, which means
the maximization of the reliability. There followed an upsurge in the use of this reliability definition by other scholars,
[8,1,10,11,17,43].

In our paper, we will adjust the first type of the conventional reliability criterion in the PM scheduling of offshore wind
farms to model the behavioral attitude of our treatment. As only the customer power demand satisfaction delineated by the
power reserve ratio has been studied in the previous definitions from the demand perspective, here the reliability criterion
can be better depicted if the decision-maker preferences are also taken into account over a set of choices or attitudes. More-
over, in offshore wind farms, the particularly complex and variable marine environment contributes to the effects of the
maintenance and degeneration on the real power reserve which may not have such significant influence on other kinds
of power plants [42]. Therefore, another factor, the system sustainability, which means the sustainable capability of reserving
the power under the combined impacts of the maintenance work and the system degradation in each time period, is of equal
importance to be considered in the reliability frame. It can reflect the actually attained power reserve ratio by exponentially
adjusting the estimated power reserve ratio. Thus, we propose a novel non-linear definition of the reliability with both of the
demand and supply side regards by introducing what we call the ‘‘attainment exponent”,2 so as to describe the decision-
maker’s preferences, the power demand satisfaction and the system sustainability simultaneously.

2 This can also be seen a curvature parameter in the reliability index, see Section 4.2.1.
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