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A B S T R A C T

To achieve a continuous and accurate navigation solution that avoids interruption, GPS is integrated with dead
reckoning techniques such as inertial navigation and speed log. A common approach to obtain a low-cost navi-
gation solution is to utilize a multisensor system consisting of MEMS-based inertial measurement unit (IMU), and
the whole system is integrated with GPS. However, these sensors provide significant inherent errors because of
their complex error characteristics. Particle filter (PF) is considered as a nonlinear filtering technique to
accommodate for arbitrary inertial sensor characteristics and motion dynamics. An adaptive fission PF (AFPF)
method is proposed to overcome the shortcoming of sample impoverishment problem and improve particle
quality. Moreover, further improvement of the MEMS-based IMU/GPS integration navigation system performance
during GPS unavailability is achieved by integrating measurement updates from speed log data. The performance
of the proposed GPS/IMU/LOG integration using AFPF is evaluated by sea trial, and results indicate that the AFPF
solution outperform three different solutions.

1. Introduction

The integration of the Global Positioning System (GPS) and Inertial
Navigation Systems (INS) can provide navigation information (position,
velocity and attitude) (Chu et al., 2013) and has been widely used for
marine navigation applications around the world. In the integrated
navigation system, high-precision position and velocity information of
ship can be provided by the outputs of GPS, while accurate and reliable
attitude information can be provided by INS in the short time. It is clear
that integrated navigation system enables to adequately exploit the su-
periority of the individual systems, such as the consistently
high-precision trajectory information of GPS and the short period sta-
bility of INS.

GPS/INS integrated navigation is the use of GPS information to cor-
rect a solution from INS. However, in hostile environment or serious
interference, the GPS satellite signal is non-availability and it is difficult
to achieve continuous location. Meanwhile GPS suffers from its own
drawbacks and errors. However, it suffers from multipath effects and its
signal may easily be blocked or lost under certain environment.
Furthermore, INS navigation accuracy degrades rapidly with time on
condition that no external aiding source is provided (Georgy et al., 2011).
The performance of the INS/GPS navigation solution descended rapidly

over time, which lead to severe error growth during periods of GPS un-
availability. The three methods to solve this problem are using higher
precision INS, adding auxiliary equipment such as speed log and using
advanced algorithm and technology. This paper will combine the latter
two methods to improve the accuracy.

A low-cost inertial measurement unit (IMU) such as MEMS-based is
preferred for ship navigation. These IMUs also have other advantages
such as small size, light weight, and low-power consumption. The ac-
curacy of MEMS-based inertial sensors decreases with time, which leads
to severe positional error growth in MEMS-IMU/GPS navigation solution
during GPS unavailability. The frequently used Linearized KF (LKF),
require a linearized system model for the navigation error states, and its
effectiveness has been demonstrated in many works (Chen, 2012; Loiola
et al., 2011; Roshany-Yamchi et al., 2013). In order to extend KF to the
nonlinear system, many modified KFs, e.g., extended KF (EKF) and un-
scented KF (UKF), have been provided. The commonly used KF-based
integration algorithms, Linearized KF and Extended KF (EKF), use line-
arized system model for the navigation error states. Nevertheless, the
performances of these modified KFs depend on the considered system,
and poor state estimation results will be obtained for the system with
high nonlinearity. These KF-based navigation solutions suffer from
divergence during GPS unavailability on account of approximations
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during the linearization process and system mismodeling (Noureldin
et al., 2009).

Nonlinear estimating techniques like the particle filter (PF) (Doucet
et al., 2000) is not limited to model characteristics and deals with
nonlinear problems more effectively. Also, PF can unite prior knowledge
and observation information to approximate the optimal filters on con-
dition that a Monte Carlo simulation and recursive Bayesian framework
are applied. PF were recently explored to improve the performance of
IMU/GPS integration using different approaches (Zhou and Loffeld,
2010; Rigatos, 2012; Georgy et al., 2012; Jwo et al., 2013; Li and Sun,
2014; Yin and Zhu, 2015; Rabbou and Elrabbany, 2015; Xia and Wang,
2016). Owing to its ability to handle with nonlinear non-Gaussian
models, PF can adapt any sensor characteristics and motion dynamics.
Yet, there are still some serious problems encountered in the general PF,
i.e., particle impoverishment. Particle impoverishment is inevitable in
virtue of the random particles prediction and re-sampling used in generic
PF, such as, under conditions of the likelihood distribution are far away
from the generated particles, their particle weights will be close to zero
with only a few particles carrying significant weights, making other
particles not efficient to produce accurate estimates, causing estimating
errors. Intelligent particle filter (IPF) (Yin and Zhu, 2015) is inspired
from the genetic algorithm. In IPF, the genetic-operators-based strategy is
designed to further improve the particle diversity. But the effectiveness of
IPF is influenced by the parameters α and pM.

With the objective to improve the performance of PF in GPS/INS
integrated navigation system, an adaptive fission PF (AFPF) method is
proposed to overcome the shortcoming of sample impoverishment
problem and improve particle quality. In this approach, the process en-
genders “offspring” particles, which are called fission. A fission factor
that is correlative with the particle weight is applied, making sure that
particle diversity is well maintained. The use of this AFPF leads to an
enhanced performance.

In addition to the use of AFPF, further improvement of the navigation
system performance during GPS unavailability is achieved by integrating
measurement updates from other sensors. The first enhancement is due
to the use of velocity obtained from the ship's log. The integrated system
solution has another advantage, which is that measurement update of the
velocities by exploiting the nonholonomic constraints on vessel move-
ments. The second approach to achieve an enhanced solution is to apply
with roll and pitch reckoned from the transversal and longitudinal ac-
celerometers readouts together with the speed log readouts as a mea-
surement update in AFPF, so as to updating roll and pitch reckoned from
gyroscopes. The updates play the role of aid the IMU and restrict the
growth for positional error during GPS degradation or blockage and thus
keep a high accuracy navigation solution. The performance of the pro-
posed AFPF based navigation solution by integrating a MEMS-based
gyroscope, the speed log, and the GPS is examined by sea trial near
Dalian port and compared to other solutions for IMU/LOG/GPS inte-
gration on condition that same sources of update as PF and velocity
updates during GPS outages, and to KF solution for IMU/GPS integration
without any update during GPS unavailability. In this paper, a loosely
coupled integration scheme is used.

2. Problem statement

In order to evaluate the state of the vessel xk at the current time step k,
given a group of measurements or observations Zk¼ {z0, …,zk} achieved
at time steps 0,1, …,k. xk is the state vector, which includes the position,
velocity, Euler angles, can be defined as

xk ¼
�
φk; λk ; hk ; v

e
k ; v

n
k ; v

u
k ; pk ; rk ;AK

�T (1)

where φk, λk, hk are the latitude, longitude, and altitude, vek, v
n
k, v

u
k are the

velocities along east, north, and vertical up directions, and pk, rk, AK are
the pitch, roll, and azimuth angles.

The nonlinear system model can be defined as

�
xk ¼ f ðxk�1; uk�1;wk�1Þ
zk ¼ hðxk; vkÞ (2)

where uk-1 represents the IMU outputs related to the motion between
time steps k-1 and k, and wk-1 stands for the process noise, vk and zk are
measurement noise the measurement vector, respectively. xk-1 is state of
the vessel at the time step k-1. The nonlinear model and measurement
model are used in GPS measurements when they are available and in
speed log measurements during GPS signal non-availability.

The state of the vessel xk is a vector of stochastic processes, and the
aim of this problem is to estimate the probability density function (PDF)
p(xkjZk) of the state at each time step k conditioned on the whole set of
sensors measurements until time k.

These models are non-linear models and there is no need to linearize
them because the technique used can deal with non-linear models. When
using EKF, the models need to be linearized, and only the first order
terms of the Taylor series are used. This leads to using an error state
approach where the KF estimates the error in the navigation states not
the states themselves. The system model used by KF is the dynamic error
model which is a linearized model and there is a separate INS mecha-
nization used for KF. On the other hand, the approach used in PF is a total
state approach not an error state approach as there is no need for line-
arization. So the system andmeasurement models used by the integration
filter for PF are the total state non-linear models and there is no separate
mechanization used.

3. AFPF approach

Before describing the mathematical models used in this integration
problem, particle filtering is shortly introduced as well as the adaptive
fission particle filter, which is an enhanced version of the PF.

3.1. Particle filter

x0:k¼ {x0,x1, …,xk} and y1:k¼ {y0,y1, …,yk} represent the sequences
of states and observations in PF, respectively. Therefore, on the basis of
Bayes' theorem, the posterior distribution of the hidden states xk can be
given as:

pðx0:kjy1:kÞ ¼ pðx0:k�1jy1:k�1Þ pðyk jxkÞpðxkjxk�1Þ
pðykjy1:k�1Þ (3)

Owing to p(ykjy1:k-1) is a normalizing constant, (3) can be expressed
by the following equation:

pðx0:kjy1:kÞ∝pðx0:k�1jy1:k�1ÞpðykjxkÞpðxk jxk�1Þ (4)

where ∝ denotes the proportional relation.
As far as nonlinear discrete system (2) is concerned, the analytic so-

lution of posterior distribution p(x0:kjy1:k) is hard to be achieved. In place
of analytically calculating p(x0:kjy1:k), PF approaches it with a mass of
particles xi0:kði ¼ 1;2;⋯;NÞ, in which N is the particle population. The
initial particles xi0 are drawn from initial distribution of states p(x0).

To cope with the conundrum in the process of sampling from the
posterior distribution, the importance sampling technique is proposed.
Suppose samples are drawn from an importance distribution that can be
easily sampled, as follows:

qðx0:kjy1:kÞ ¼ qðx0:k�1jy1:k�1Þqðxkjx0:k�1; y1:kÞ (5)

Combined with (3), the importance weight of particles can be
formulated in a recursive form, as follows:

wi
k ¼

pðx0:kjy1:kÞ
qðx0:kjy1:kÞ∝w

i
k�1

p
�
yk
��xik�p�xik��xik�1

�
qðxikjxi0:k�1; y1:kÞ

(6)

where wi
k is the importance weight of particle i at a time step k, and ~wi

k is
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