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a b s t r a c t

In this paper, we focus on designing a particle filter for a class of nonlinear discrete-time stochastic sys-
tems, where the multi-sensor measurements can be randomly and asynchronously delayed by one- or
two- sampling periods. Under the independence assumption of multi-sensor delays, asynchronous delay
model is built by using a separate set of Bernoulli random variables to describe the relationship between
the ideal measurement and the actual measurement for each sensor. Based on the model, a new weight-
ing scheme for particles is derived with the measurement delay fully considered. By incorporating the
weighting scheme into the particle filtering framework, we obtain a new filter for systems with delayed
measurements. The performance of the proposed filter is demonstrated by two numerical examples.

� 2017 Elsevier GmbH. All rights reserved.

1. Introduction

In recent years, nonlinear filtering has been an active research
field and plays an important role in many applications (see, e.g.,
[1–4] and the references therein). The classical filtering methods
are based on the assumption that the measurements are available
in a real-time manner. However, in many actual applications such
as the communication networks with remote sensors, the received
measurements may undergo random delay due to the network
congestion. Hence, developing new nonlinear filters is urgently
demanded to tackle the problem of Random Measurement Delay
(RMD) [5].

Generally speaking, the filtering problems for systems with
measurement delay can be divided into two categories according
to whether the measurement data packets are time-stamped or
not. For time-stamped cases, it is exactly known when the current
received measurement is collected by a sensor, and many filters
have been developed in Kalman filtering framework [6,7] or parti-
cle filtering framework [8,9].

For no time stamp cases, the measurement delay is considered
to randomly arise with a certain probability and usually described
by a set of stochastic parameters obeying Bernoulli distribution.
Following this idea, in [10,11], a modified extended Kalman filter
and a modified unscented Kalman filter for nonlinear systems with
one- or Two-step RMD (TRMD) have been proposed based on the
first-order linearization and unscented transformation respec-
tively. Via Gaussian approximation of the one-step posterior pre-
dictive Probability Density Functions (PDFs) of state and delayed
measurement, a Modified Cubature Kalman Filter (MCKF) [12]
and the corresponding smoother [5] were proposed for nonlinear
systems with One-step RMD (ORMD).

These estimates were developed in Gaussian approximation
framework, where the distributions of state and measurement
are assumed to be Gaussian. However, due to the nonlinear prop-
agation of state, these distributions may be far away from Gaus-
sian, which leads to degraded performance [13].

Recently, Particle Filters (PFs) [14] have proven to be promising
alternatives to Gaussian approximation filters since they do not
have the limitation imposed by the Gaussian assumption, and
can yield optimal results asymptotically in the number of particles
[2,15]. Recently, taking into account the multi-step RMD, a modi-
fied PF was also proposed in [16]. The derivation of the filter is
based on an additional assumption, i.e., conditioned on the current
state, the current received actual measurement is independent of
the previous ones. Indeed, this assumption is true for no delay sys-
tems. However, it does not hold in the presence of measurement
delay, which brings a theoretical problem to the algorithm. In
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addition, the filter is only suitable for single sensor systems or
multi-sensor systems but with synchronous delay. In fact, multi-
sensor asynchronous delay is more common in practice since mea-
surements from different sensors may take different transmission
links and consequently have different delay steps. In this paper, a
more elaborate PF is developed to address the problem of RMD
with delay steps no more than 2. The filter no longer suffers from
the theoretical problems in [16] and can be used for systems with
multi-sensor asynchronous delay.

2. Problem formulation

Consider the following multi-sensor nonlinear dynamic system

xt ¼ f tðxt�1Þ þwt�1 ð1Þ

zt;k ¼ ht;kðxtÞ þ v t;k; k ¼ 1;2; . . . ;K ð2Þ
where xt is the n-dimensional state vector with known initial distri-
bution pðx0Þ, zt;k is themk-dimensional ideal measurement collected
by the k-th sensor at time t, wt � pwð�Þ and v t;k � pv;kð�Þ denote the
white process noise and measurement noise respectively. The sys-
tem function f tð�Þ and measurement function ht;kð�Þ, as well as the
PDFs pwð�Þ and pv;kð�Þ, are known a priori. Define zt to be the mea-

surement set of the K sensors, i.e., let zt ¼ ½zt;1; zt;2; . . . ; zt;K �T .
The multi-sensor asynchronous RMDmodel with the maximum

possible delay step being 2 can be formulated as

yt;k ¼
zt;k; t ¼ 1;2P2

d¼0cdt;kzt�d;k; t > 2

(
; k ¼ 1;2; . . . ;K ð3Þ

where yt;k is the current received actual measurement collected by

the k-th sensor, d is the delay step, cdt;k;d ¼ 0;1;2 are Bernoulli ran-
dom variables taking the value of 1 if yt;k is delayed by d sampling

periods. Define yt ¼ ½yt;1; yt;2; . . . ; yt;K �T to be the actual measurement
set of the K sensors.

Define ct;k ¼ ½c0t;k; c1t;k; c2t;k�
T . For any given t and k, the state space

of ct;k consists of 3 column vectors fcdt;kg
2

d¼0
. In cdt;k, the ðdþ 1Þ-th

element cdt;k takes the value of 1, while others take 0. For example,

c1t;k ¼ ½0;1; 0�T . Random vector ct;k obeys the known discrete
distribution

pðct;k ¼ cdt;kÞ ¼ pd
t;k; d ¼ 0;1;2 ð4Þ

where pd
t;k P 0 and

P2
d¼0p

d
t;k ¼ 1. The random event ct;k ¼ cdt;k indi-

cates that, for the k-th sensor, the current received measurement

yt;k is delayed by d sampling periods. It is assumed that ct1 ;k is inde-
pendent of ct2 ;k when t1 – t2, and ct;k1 is independent of ct;k2 when
k1 – k2. We further assume the mutual independence of x0,
fwt; t P 0g, fv t;k; t > 0gKk¼1 and fct;k; t > 0gK

k¼1
.

For the case of K ¼ 2, the dynamic system given by (1)–(3) can
be illustrated by Fig. 1. Our aim is to recursively estimate xt based
on all available measurements y1:t ¼ fysgts¼1:

Remark 1. The ORMDmodel can be regarded as the special case of
model (3). Indeed, if p2t;k � 0; for all k ¼ 1;2; . . . ;K , then model (3)

reduces to ORMD model.

Remark 2. The RMD model given by (3) poses a great challenge to
estimators due to the degraded quality of received measurements.
Compared with z1:t , the actual measurement sequence y1:t not only
is out-of-sequence, but also suffers from measurement random
missing. It is easy to prove that the ideal measurement zt;k, t > 2
is absent from the actual measurement sequence with probability
Pmiss ¼ ð1� p0

t;kÞð1� p1
tþ1;kÞð1� p2

tþ2;kÞ: Specially, if the delay proba-
bilities are time-invariant, i.e. they can be represented by
p0
t;k ¼ p0

k ; p1
t;k ¼ p1

k and p2
t;k ¼ p2

k ; then Pmiss reaches the maximum

value 8/27 at the point p0
k ¼ p1

k ¼ p2
k ¼ 1=3.

3. Particle filter for systems with multi-sensor TRMD

In PF, the joint PDF pðx0:t jy1:tÞ is usually approximated by a set of
weighted particle-trajectories as follows

pðx0:t jy1:tÞ �
XN
i¼1

pi
tdðx0:t � xi0:tÞ ð5Þ

where dð�Þ is the Dirac delta function, xi
0:t ¼ fxi0; xi

1; . . . ; x
i
tg is the i-th

particle-trajectory drawn from a pre-selected importance density
function qðx0:tjz1:tÞ and assigned a normalized weight according to

pi
t /

pðxi0:t jy1:tÞ
qðxi0:tjy1:tÞ

ð6Þ

Here, / stands for ‘proportional to’.

Assume that the weighted particle-trajectory set fxi0:t�1;pi
t�1g

N
i¼1

is available. When yt arrives, a new set fxi
0:t ;pi

tg
N
i¼1 is required to

approximate pðx0:t jy1:tÞ, where xi0:t � qðx0:t jy1:tÞ. Usually, qðx0:t jy1:tÞ
is chosen to factorize such that

qðx0:tjy1:tÞ ¼ qðxt jx0:t�1; y1:tÞqðx0:t�1jy1:t�1Þ ð7Þ
Then xi

0:t can be obtained by augmenting the existing particle-
trajectory xi0:t�1 � qðx0:t�1jy1:t�1Þ with the new state
xit � qðxt jxi

0:t�1; y1:tÞ: By using the Bayes’ rule, we have

pðx0:t jy1:tÞ ¼
pðyt jx0:t ; y1:t�1Þpðxt jx0:t�1; y1:t�1Þpðx0:t�1jy1:t�1Þ

pðyt jy1:t�1Þ
/ pðyt jx0:t ; y1:t�1Þpðxt jxt�1Þpðx0:t�1jy1:t�1Þ ð8Þ

If we choose qðxt jx0:t�1; y1:tÞ ¼ pðxt jxt�1Þ, and perform resam-
pling at each filter cycle just like the Standard PF (SPF) [14], then
by substituting (7) and (8) into (6), the weight equation can be
simplified as

pi
t / pðytjxi0:t; y1:t�1Þ ¼ pðytjxit�2:t ; y1:t�1Þ ð9Þ
The equality in (9) comes from the fact that, conditioned on

xit�2:t , yt does not depend on xi0:t�3.
In [16,17], an additional assumption, i.e., yt does not depend on

y1:t�1, is made, which leads to a further simplified weight equation
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Fig. 1. Two-sensor asynchronous delay model with maximum possible delay step
being 2.
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