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a b s t r a c t 

This paper focuses on the energy-to-peak filtering issue for a class of singular semi-Markov jump sys- 

tems with unideal measurements. Some network-induced phenomena, such as sensor nonlinearity and 

packet dropouts caused by the unideal measurements are considered. The occurrence of sensor non- 

linearity is described in a random way and obeyed a Bernoulli distribution. In the framework of the 

Lyapunov–Krasovskii stability theory, some sufficient conditions are given to ensure that the considered 

error system is stochastically mean-square stable and guarantees an energy-to-peak (or called L 2 − L ∞ 

) 

performance level. On the basis of these conditions, an available design method to the desired filter is 

proposed drawing support from an improved matrix decoupling approach. For showing the effectiveness 

and superiority of the proposed method, we finally provide two illustrated examples. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Singular systems (SSs) are regard as implicit systems, 

differential-algebraic systems, generalized systems, descriptor 

systems or semi-state systems. Owing to their approximate de- 

scription of some physical systems compared with the state-space 

systems, SSs have been applied in quantities of areas, such as, 

power systems, electrical circuits, chemical processes and oth- 

ers. As a consequence, it is no wonder that SSs have attracted 

particular research attention during the last several decades and 

tremendous research progress has been generated, (see [1–4] , and 

the references therein). Furthermore, it is certainly worth pointing 

out that a kind of stochastic SSs, i.e., Markov jump singular sys- 

tems (MJSSs), has been seen as a highlight during the development 

of SSs [5] . In fact, MJSSs represent the stochastic switched systems 

composed of a number of sub-systems where switching among 

themselves is governed by a Markov chain. Because of the above 

light spot of Markov jump systems (MJSs) [6–9] , MJSSs have the 
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unique advantage for modelling the SSs with abrupt changes in 

their structures. Therefore, quite a few research efforts have been 

devoted to the study of MJSSs. For instance, some design methods 

to solving the H ∞ 

filtering and control issues for continuous-time 

MJSSs were proposed in [10] and [11] , respectively. In the context 

of discrete-time MJSSs, the H ∞ 

filtering problem was addressed in 

[12] . 

Although the MJSSs get the favour of many researchers for their 

better ability to model systems, it still has a certain degree of 

boundedness in some scenarios due to the inherent imperfections 

of MJSs. A truism restriction for MJSs is that the sojourn-time ex- 

isted in two consecutive jumps is required to follow the exponen- 

tial distribution which is a memoryless distribution [13] . Such a 

requirement on MJSs is too harsh, which not only is unreason- 

able in some practical applications but also brings some conser- 

vative. So as to relax the restriction, a new class of MJSs called 

semi-Markov jump systems (SMJSs) [14–17] was proposed. Very 

recently, due to the fact that SMJSs have maintained momentum 

not only in practice but also in theory, quite a few effort s have 

been assembled into this topic [18,19] . Unfortunately, a drawback 

of the above-mentioned works is lack of considering the feature of 

singular systems in the study of SMJSs [20,21] . Fortunately, Wang 

et. al. originally investigated the study for continuous-time semi- 

Markov jumping singular systems (SMJSSs) with uncertainty and 

nonlinearity in [22] , where a sufficient condition was presented to 

successfully ensure that the nonlinear SMJSSs were stochastically 

admissible. It should be also pointed out that the network induced 
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phenomena were not fully considered in [22] . Such a regret pro- 

vides the first motivation of our recent work. Different from [22] , 

we focus on the issue of energy-to-peak filtering for SMJSSs, where 

the phenomena of sensor nonlinearity and packet dropouts occur 

simultaneously. 

In parallel, the robust filtering problem is a permanent topic 

in the study of SSs with external noises. In the practical situa- 

tion, some system states are often difficult to be measurable, or 

even unmeasurable due to technical constraints and other factors 

[23–30] . How to estimate the unmeasurable states becomes an 

interesting question. Mainly for the above reason, the concept of 

filtering has been put forward. With tremendous attention from 

researchers, the filtering technique has developed rapidly, from the 

conventional Kalman filtering which has long enjoyed a good repu- 

tation for handling the systems with white noise to energy-to-peak 

filtering and H ∞ 

filtering which are only required the noise signal 

is the ∞ -norm and energy-bounded. More precisely, for the issue 

of energy-to-peak filtering, which includes of minimizing the peak 

error value, the filter design with ensured the fixed energy-to-peak 

performance of uncertain systems was discussed in [31,32] . The re- 

sults in [33] coped perfectly with such a problem for a class of 

MJSSs. It is worth remarkable that the results in [31,33] were ob- 

tained based on an ideal network transmission environment, that 

is, any network induced phenomenon does not occur. However, 

such an assumption could be hardly guaranteed due to the com- 

plication of environments. Therefore, it is necessary to consider the 

filtering problem for systems with unreliable links. Above all, how 

to address this intriguing question is the another motivation of this 

work. 

Summarizing the discussions mentioned above, this paper ad- 

dresses the issue of energy-to-peak filtering for SMJSSs. A con- 

struction method of the mode-dependent filter is given to en- 

sure the resulting error system is stochastically mean-square sta- 

ble with an energy-to-peak disturbance rejection attenuation level. 

There are three main contributions in this paper: 1) The issue of 

energy-to-peak filtering for a class of quite comprehensive sys- 

tem models (i.e. SMJSSs) is investigated for the first time; 2) The 

unideal measurements case is fully taken into account, and accord- 

ingly the occurrence of some network induced phenomena include 

sensor nonlinearity and packet dropouts caused by the unideal 

measurements are described in a stochastic way. 3) An improved 

matrix decoupling approach, which may provide more free degree 

and flexibility to structure the desired filter than that in [10] , is 

introduced. 

2. Problem formulation 

Considering the following class of linear continue-time singular 

system ( �) 

E ̇ x ( t ) = A ( α( t ) ) x ( t ) + B ( α( t ) ) ω ( t ) , (1) 

y ( t ) = δ( α( t ) , t ) C ( α( t ) ) x ( t ) + ( 1 − δ( α( t ) , t ) ) �( x ( t ) ) , (2) 

z ( t ) = D ( α( t ) ) x ( t ) , (3) 

where x ( t ) ∈ R 

a , y ( t ) ∈ R 

b and z ( t ) ∈ R 

c are the system state and 

the measurement output and the controlled output, respectively. 

ω ( t ) ∈ R 

d is the disturbance. E ∈ R 

a ×a may be a singular matrix, 

and A ( α( t )) , B ( α( t )), C ( α( t )) and D ( α( t )) are fixed real constant 

matrices with appropriate dimensions. The random variable { α( t )} 

stands for a semi-Markov jump process with right continuous tra- 

jectories, which is homogeneous, finite-state and takes discrete val- 

ues in a fixed set S = { 1 , 2 , . . . , r } . Furthermore, its transition prob- 

ability matrix 
∏ � = { πmn ( � ) } is described by 

Pr { α( t + � ) = n | α( t ) = m } = 

{
πmn ( � ) � + o ( � ) , m � = n 

1 + πmn � + o ( � ) , m = n 

, (4) 

where � > 0 is the sojourn time, lim �→ 0 ( o ( � ) / � ) = 0 and 

πmn ( � ) ≥ 0, for n � = m , is the transition rate from mode m at time t 

to mode n at time t + � and 

πmm 

( � ) = −
∑ 

n ∈S , n � = m 

πmn ( � ) . 

Remark 1. As stated in [18] , the transition rate of semi-Markov 

jump process is often partly available. Therefore, we assume that 

the transition rate πmn ( � ) is in the range of 

[ 
π i 

mn , π
j 

mn 

] 
and can 

be naturally rewritten as follows 

πmn ( � ) = 

H ∑ 

h =1 

βh πmn,h , 

H ∑ 

h =1 

βh = 1 , βh � 0 , (5) 

and 

πmn,h = 

{ 

π i 
mn,h 

+ ( h − 1 ) 
π j 

mn,h 
−π i 

mn,h 

H−1 
, n � = m, n ∈ S 

π j 

mn,h 
− ( h − 1 ) 

π j 

mn,h 
−π i 

mn,h 

H−1 
, n = m, n ∈ S 

. (6) 

Specifically, the nonlinear function �( · ) is assumed to satisfy 

the following condition for each x, y ∈ R 

a [34] 

[ �( x ) −�( y ) −Y 1 ( x −y ) ] 
T 

[ �( x ) −�( y ) −Y 2 ( x −y ) ] � 0 , �( 0 ) =0 , 

(7) 

where Y 1 and Y 2 are appropriate dimensional constant matrices 

known beforehand. δ( α( t ), t ) are mode-dependent random vari- 

ables taking values 0 or 1. They obey the following probability dis- 

tribution laws 

Pr { δ( α( t ) , t ) = 1 } = E { δ( α( t ) , t ) } = δ̄( α( t ) ) , 

Pr { δ( α( t ) , t ) = 0 } = 1 − δ̄( α( t ) ) , 

where δ̄( α( t ) ) ∈ [ 0 , 1 ] are known beforehand constants. Clearly, for 

the stochastic variables δ( α( t ), t ), one has 

E 
{
δ( α( t ) , t ) − δ̄( α( t ) ) 

}
= 0 , 

E 
{| δ( α( t ) , t ) − δ̄( α( t ) ) | 2 } = δ̄( α( t ) ) 

(
1 − δ̄( α( t ) ) 

)
. (8) 

Remark 2. For modeling the randomly occurring of sensor nonlin- 

earity and packet dropouts, the mode-dependent random variables 

δ( α( t ), t ) are taken into account, which are obeyed the Bernoulli 

distribution. Form the description of measurement output y ( t ) in 

(2), we can easily discover the following two facts: 

1) under the condition of δ( α( t ) , t ) = 0 , the equality of (2) will 

degrades to y ( t ) = �( x ( t ) ) , which only has the sensor nonlinear 

and denotes the packet dropout; 

2) under the condition of δ( α( t ) , t ) = 1 , the equality of (2) will 

changes to y (t) = C(α(t )) x (t ) , which only has the normal mea- 

surement output and expresses the normal case. 

In this paper, we are interested in designing a filter as follow 

E ̇ x f ( t ) = A f ( α( t ) ) x f ( t ) + B f ( α( t ) ) y ( t ) , (9) 

z f ( t ) = C f ( α( t ) ) x f ( t ) , (10) 

where x f ( t ) is the filter state vector, z f ( t ) is the estimate of z ( t ), 

A f ( α( t )), B f ( α( t )) and C f ( α( t )) are constant real matrices of filter to 

be determined. From convenience point of view, we denote A m 

= 

A ( α( t ) ) and A fm 

= A f ( α( t ) ) for each α( t ) = m ∈ S, and the other 

symbols are similar denoted. 
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