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Abstract

This paper deals with the standard completeness of involutive non-associative, non-commutative, substructural fuzzy logics and 
their axiomatic extensions. First, fuzzy systems based on involutively residuated mianorms (binary monotonic identity aggregation 
operations on the real unit interval [0, 1]), their corresponding algebraic structures, and their algebraic completeness results are 
discussed. Next, completeness with respect to algebras whose lattice reduct is [0, 1], known as standard completeness, is established 
for these systems via a construction in the style of Jenei–Montagna. These standard completeness results resolve a problem left 
open by Cintula, Horčík, and Noguera in the recent Handbook of Mathematical Fuzzy Logic and Review of Symbolic Logic. 
Finally, we briefly consider the similarities and differences between constructions of the author and Wang’s Jenei–Montagna-style.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this paper is to introduce standard completeness results for involutive non-associative, non-commutative, 
substructural fuzzy logics. Recall first some recent historical facts associated with such logics. Fuzzy logics are sub-
structural logics, i.e., logics that lack various structural rules such as weakening and contraction (see [10,17]). The 
system FL (Full Lambek logic) is a prominent example of a substructural logic. This logic system does not assume the 
structural rules of exchange, weakening, and contraction, but instead stipulates associativity. Substructural logics that 
further eliminate associativity have been introduced. Galatos (and Ono) [9,11,12] introduced GL, a non-associative 
generalization of FL whose algebraic semantics is given by the variety of residuated lattice-ordered unital groupoids 
(briefly, rlu-groupoids) in the sense of [10].
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According to Cintula (and Běhounek) [1,3], a (weakly implicative) logic L is said to be fuzzy if it is complete with 
respect to (w.r.t.) linearly ordered matrices (or algebras) and core fuzzy if it is complete w.r.t. standard algebras (i.e., 
algebras on the real unit interval [0, 1]). The substructural logic systems FL and GL are not (core) fuzzy logics because 
they are not complete w.r.t. such algebras. Their corresponding core fuzzy systems have been recently introduced. The 
systems UL (Uninorm logic) and MIAL (Mianorm logic, = SL�) are the weakest (core) fuzzy logics extending FL
and SL, a bounded version of GL, respectively. In particular, MIAL has been introduced very recently by Cintula, 
Horčík, and Noguera as the weakest possible fuzzy logic in [4–6,15].

Although Cintula, Horčík, and Noguera have introduced weakening-free, non-associative, non-commutative sub-
structural (core) fuzzy logics and their corresponding completeness properties, many problems still remain. For 
instance, standard completeness for such involutive logics is unresolved by [4,15]. In this paper, we characterize 
involutive core fuzzy logics extending MIAL. Specifically, this paper introduces IMIAL (Involutive mianorm logic), 
which is intended to cope with the tautologies of left-continuous conjunctive mianorms (binary monotonic identity 
aggregation operations) and their involutive residua, as InSL�, the involutive SL�.

This paper is organized as follows. In Section 2, we introduce the logic IMIAL and its non-associative, non-
commutative axiomatic extensions, along with their corresponding algebraic semantics. In Section 3, we define 
mianorms and their involutive residua and provide some examples. In Section 4, we establish standard complete-
ness for IMIAL and its axiomatic extensions using the Jenei–Montagna-style construction introduced in [8,16]. This 
consists of showing that countable, linearly ordered involutive algebras of a given variety can be embedded into lin-
early and densely ordered members of the same variety, which can in turn be embedded into involutive algebras with 
lattice reduct [0, 1]. These results were unresolved in [4,15].

Note that some Jenei–Montagna-style constructions for axiomatic extensions of MIAL have been provided: Yang 
has introduced such construction for the extensions MICAL (MIAL with the exchange axiom ϕ&ψ → ψ&ϕ) and
IMICAL (MICAL with the involution axiom ¬¬ϕ → ϕ) in [22]. Wang has performed similar construction for the 
extensions CnUL (UL with the n-potency axiom ϕn ↔ ϕn−1) and CnIUL (CnUL with the involution axiom) in [18,
19]. The construction introduced in Section 4 is a generalization of Yang’s. We may also investigate the standard 
completeness results in Section 4 using Wang’s approach.

Note also that the present author considered the similarities and differences between the constructions of Yang 
and Wang’s Jenei–Montagna-style in [22]. However, the similarities and differences between the constructions for 
involutive logics such as IMICAL and CnIUL have not yet been investigated. In Section 5, we briefly consider the 
similarities and differences between the involutive constructions of the author and Wang’s Jenei–Montagna-style.

For convenience, we adopt notations and terminology similar to those in [3–7,14,17,20–24], and we assume reader 
familiarity with them (along with results found therein).

2. The logic IMIAL and its axiomatic extensions

The term involutive mianorm-based logics refers to substructural fuzzy logic systems with mianorm-based seman-
tics, where the (strong) conjunction and implication connectives ‘&,’ ‘→,’ and ‘�’ are interpreted as a left-continuous 
conjunctive mianorm and its involutively residuated pair. In this framework, the weakest logic is IMIAL. This logic 
and its axiomatic extensions (henceforth referred to as extensions) can be based on a countable propositional lan-
guage with formulas Fm, built inductively as usual from a set of propositional variables VAR, binary connectives 
→, �, &, ∧, ∨, and constants �, ⊥, 0, 1, with defined connectives:

df1. ¬ϕ := ϕ → 0,

df2. −ϕ := ϕ � 0, and
df3. ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ).

We further define ϕ1 as ϕ ∧ 1. For the rest of this paper, we use the customary notations and terminology and the 
axiom systems to provide a consequence relation.

We start with the following axiomatization of IMIAL, the most basic involutive fuzzy logic introduced here.

Definition 1. ([4,5]) IMIAL consists of the following axiom schemes and rules:
(ϕ ∧ ψ) → ϕ, (ϕ ∧ ψ) → ψ (∧-elimination, ∧-E)
((ϕ → ψ) ∧ (ϕ → χ)) → (ϕ → (ψ ∧ χ)) (∧-introduction, ∧-I)
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