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This work proposes a declarative semantics based on a fuzzy variant of the classical 
notion of least Herbrand model for the so-called FASILL programming language (acronym 
of “Fuzzy Aggregators and Similarity Into a Logic Language”) which has been recently 
designed and implemented for coping with implicit/explicit truth degree annotations, a 
great variety of connectives and unification by similarity. Also, we define an immediate 
consequence operator that allows us to give a fixpoint characterization of the least 
Herbrand model for a FASILL program. A remarkable aspect of our declarative and fixpoint 
semantics is the fact that both have been enriched with the use of thresholds thanks to the 
natural ability of the underlying fuzzy language for managing such constructs. Moreover, 
we have connected both semantics with an operational one, which also manages thresholds 
in an efficient way, by proving the correctness of the whole semantic framework.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The research field of Fuzzy Logic Programming is devoted to introduce fuzzy logic concepts into logic programming in 
order to deal with vagueness in a natural way. It has provided an extensive variety of logic programming dialects along 
the last three decades. Fuzzy logic languages can be classified (among other criteria) by the emphasis placed on fuzzifying 
the traditional mechanisms of unification and resolution used in Logic Programming. Some approaches focus on replacing 
the classic unification algorithm by one based on the use of similarity/proximity relations [5,15,44,46]. Similarity/proximity 
relations connect the elements of a set with a certain approximation degree and serve for weakening the notion of equality 
and, hence, to deal with vague information. Other approaches modify the operational principle of pure logic programming 
to replace it by inference mechanisms based on fuzzy logic, which allow a wide variety of connectives and the use of a 
gradation of truth degrees (beyond the traditional values of true and false) [35,39,53].

Our research group has been involved in the development of both similarity-based logic programming systems and 
those that extend the resolution principle, as reveals the design of Bousi∼Prolog1 [21,23,44], with an unification algorithm 
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based on similarity/proximity relations, and the development of the FLOPER system,2 which implements a fuzzy inference 
mechanism able to manage programs composed by rules richer than clauses [36,38].

Recently, we have combined these two lines of work embedding into FLOPER the weak unification algorithm 
of Bousi∼Prolog and leading to an integrated programming language named FASILL (acronym of “Fuzzy Aggrega-
tors and Similarity Into a Logic Language”). FASILL programs have three components: a set of (conditional) rules; 
a similarity relation, weakening equality; and a complete lattice, whose elements are interpreted as truth degrees.
FASILL is publicly available: the last version of the FLOPER system which copes with similarity relations can be 
freely downloaded from http://dectau.uclm.es/floper/?q=sim and it can also be tested on-line through 
http://dectau.uclm.es/floper/?q=sim/test.

In this paper, we propose a semantic framework for the FASILL programming language. Following a scheme analogue 
to the one shown in [18,21,26], we introduce the concept of a fuzzy Herbrand interpretation and a notion of a fuzzy 
Herbrand model linked to an extended structure which embeds the meaning induced by the similarity relation component 
of a program. Then, we define a fuzzy immediate consequence operator as a basis for a fixpoint semantics. Also we provide 
an operational semantics and its success set semantics (i.e., the fuzzy set of ground atoms with a “successful” derivation). All 
these semantic concepts are characterized by a threshold, which is also called a λ-cut (see later).

Although in this study we use general techniques extracted from [26], there are remarkable differences between
Bousi∼Prolog and FASILL which are important to note from the beginning:

1. From a syntactic point of view, contrary to Bousi∼Prolog, which does not allow rule annotations (in other words,
Bousi∼Prolog rules are considered completely true), FASILL uses implicit annotations, by using a literal representing a 
lattice value (acting as a truth degree). Therefore, FASILL has two ways for expressing uncertainty: implicit annotations 
and similarity relations.

2. From the declarative (and fixpoint) semantics side, FASILL (because it is a heir of MALP) only considers “truth upper 
bounds”, contrary to the option taken in Bousi∼Prolog, where only “truth lower bounds” are considered. This has a 
direct implication in the definition of the instrumental notion of extended program (see Section 4) as well as in the 
concepts it supports.

3. On the other hand, from the operational semantics point of view, Bousi∼Prolog is a refutational language that extends 
the classical SLD resolution procedure with the ability to deal with similarity-based unification. On the contrary, FASILL
is not a refutational language but operates backwards using a kind of generalized modus ponens.

These are notable differences which make our approach a new framework without exact correspondence with the previous 
ones. Consequently, it is necessary to redefine and adapt the concepts derived from both Bousi∼Prolog and MALP. These 
adaptations, necessary for a correct integration, can be seen as one of the contributions of this work.

The outline of this paper is as follows. Firstly, in Section 2 we formally define the syntax of FASILL and we also illustrate 
some of its features. Afterwards, in Section 3 some notes on the implementation of the FLOPER system, supporting FASILL, 
are provided, along with an enumeration of practical applications which constitute a motivation for our work. Next, Section 4
details the declarative semantics of FASILL. In that section, we extend the classical concepts of Herbrand interpretation, 
Herbrand model and least Herbrand model of a program to the case of the new language. We perform this task in a 
conservative way by embedding the corresponding concepts of the multi-adjoint logic programming (MALP) framework 
[35] into FASILL. Section 5 provides a fixpoint characterization of the least fuzzy Herbrand model for a FASILL program. 
There, we determine the precise relationship between the declarative and the fixpoint semantics. In Section 6 we introduce 
the similarity-based unification algorithm we use and the thresholded operational semantics of FASILL. Next, Section 7
gives some correctness properties linking the declarative semantics and the operational semantics. Specifically, we prove 
the equivalence between the least Herbrand model of a program and its success set semantics with regard to a cut level. 
In Section 8 we present some pieces of related work, putting the FASILL language in context. We also show some of the 
differences between the FASILL programming language and other related approaches. Finally, in Section 9 we give our 
conclusions and future research lines.

Ending this section, we would like to say that some parts of this work have been published as immature versions in 
conference proceedings [17,20]. These parts have been improved and error pruned.

2. The FASILL language

FASILL is a first order language built upon a signature �, that contains the elements of a countably infinite set of 
variables V , function symbols, and predicate symbols with an associated arity – usually expressed as pairs f /n or p/n
where n represents its arity –, the implication symbol (←), and a wide set of other connectives ζ (t-norms, t-conorms 
and aggregators). The language combines the elements of � as terms, atoms, rules, and formulas. A constant c is a function 
symbol with arity zero. A term is a variable, a constant or a function symbol f /n applied to n terms t1, . . . , tn , and is denoted 
as f (t1, . . . , tn). We allow the existence of a set of truth degree literals, �L , as part of the signature �. These literals are 

2 The tool is freely accessible from the Web site http://dectau.uclm.es/floper/.
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