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A B S T R A C T

The storage quality of shelled peanuts during storage were assessed using hybrid electronic nose (e-nose)–fuzzy
logic approach, beyond conventional tests. Fuzzy logic was used to rank and screen best responsive MOS sensors
(total 18) to detect global rancid odors from aged peanuts. Using e-nose data, an odor index (OI) was estimated
and correlated with chemical rancidity indices (peroxide value (PV) and acid value (AV)). Multiple linear re-
gressions (MLR) were used to predict the storage time and rancidity indices of peanuts using response data of
fuzzified sensors. Fuzzy interpretation identified four sensors which best classified aged and deliberately rancid
peanuts using principal component and hierarchical cluster analysis. E-nose data closely predicted the storage
time of peanuts relative to chemical rancidity indices (R2, 0.993; RMSE, 3.31 vs. R2, 0.985; RMSE, 4.57)
(p > 0.05). In addition, it predicted the rancidity indices with accuracy (PV: R2 = 0.995, RMSE = 0.29; AV:
R2 = 0.989, RMSE = 0.19). OI of peanuts was highly correlated with PV (0.99) and AV (0.96) and estimated
their discard time (basis threshold PV = O2 at 10 mmol kg−1) as 99 d (e-nose) vs. 97 d (conventional tests). The
presented approach could be adopted as non-destructive alternative to conventional tests to assure post-harvest
quality of shelled peanuts at agro-industrial settings.

1. Introduction

Peanut (Arachis hypogaea L.) is a legume crop taxonomically clas-
sified in Leguminosae family and mainly grown for its edible oil seeds. It
is highly valued industrial oil crop grown in tropical and sub-tropical
regions of the world. It is widely consumed as an economical supple-
ment to counter malnutrition owing to its excellent nutritional profile
(ca. 26, 48, and 3% protein, oil, and fibres, respectively) (Sarvamangala
et al., 2011). Peanut is a trade crop with multiple platform applications
in pharmaceutical and culinary industries as an important ingredient to
therapeutic foods, peanut oil, peanut butter, peanut flour, and peanut
based confections. The oilcake residue from peanut oil extraction is
used as an animal feed and soil fertilizer to enrich nitrogen content.

The post-harvest quality of shelled peanuts is subject of utmost at-
tention as it is highly susceptible to rancidity during storage and pro-
cessing owing to high lipid content. The traditional methods to detect
peanuts rancidity rely heavily on the chemical tests namely peroxide
value (PV) and acid value (AV), and sensory evaluation by trained
panels which is time and solvent consuming and often suffers panel’s
subjectivity issues (Zheng et al., 2009). The advanced analytical in-
strumentations namely gas chromatography–mass spectrometry (Liu
et al., 2013), high performance liquid chromatography (Hepsag et al.,

2014), and hybrid immuno–chromatographic methods (Zhang et al.,
2011) can effectively resolve these issues. However, they suffer dis-
advantages of being expensive, laborious, and environmentally taxing
due to the requirement of trained labor and organic solvents. The in-
ternal quality changes in peanuts require time to reflect on its surface;
thus, making it hard to detect the real-time storage quality of the
peanuts.

Recently, electronic nose (e-nose) has gained wide popularity in
analytical space owing to its rapid and non-destructive ways to identify
the global aroma profile (Esteves et al., 2014; Upadhyay et al., 2017a).
It consists of an array of sensors which mimics the human nose in re-
cognizing the complex odor associated with food products and in-
tegrated statistical data processing tools. The odor volatiles pass
through the array of sensors, and their response signals are recorded as
fingerprints for analysis. E-nose has been successfully applied in diverse
fields with a particular focus on agro-food industry (Capone et al.,
2013; Lippolis et al., 2014; Pacioni et al., 2014). Though, e-nose has
been previously investigated to link the pattern of aroma related
changes in peanuts during roasting operations (Osborn et al., 2001;
Jensen et al., 2005); there are limited studies which described the e-
nose based detection of rancidity indices in peanuts during storage (Wei
et al., 2015; Xu et al., 2017). It is important to highlight that array of
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sensors in e-nose system adds to its versatility in identifying the global
fingerprint of volatile compounds. Interestingly, Chatterjee et al. (2014)
stated that the presence of multiple sensors in e-nose often creates poor
sample discrimination and suggested the statistical approaches to fil-
tering the most responsive sensors to analyze the odor fingerprints of
food samples. Our group recently investigated the application of fuzzy
logic as an appropriate filtering method to screen the e-nose data in oil
frying (Upadhyay et al., 2017a). The analogy was derived from the
application of fuzzy logic in sensory tests to rank the linguistic data of
sensory panels (Jaya and Das, 2003; Routray and Mishra, 2012). Our
best literature survey indicates that this is the first attempt to integrate
fuzzy logic interpretation to data extracted from e-nose analysis to
predict the storage quality of shelled peanuts. It is presumed that the
present investigation could contribute to the existing knowledge gap in
this domain and would allow the benefits of e-nose based quality as-
sessment to be reaped at post-harvest scale of agro-food industries.

In this work, we investigated (1) ability of hybrid e-nose–fuzzy logic
approach to filter (ranking and screening) the best responsive sensors
which could be used to monitor the conventional chemical rancidity
indices (PV and AV) in shelled peanuts, and (2) predict the storage time
and chemical rancidity indices of shelled peanuts by data extracted
from fuzzy screened sensors using multiple linear regressions (MLR).
Odor Index (OI) was also calculated by data processing software in-
tegrated with e-nose data and later correlated with chemical rancidity
indices to estimate the discard time of aged peanuts. The hybrid e-no-
se–fuzzy logic approach envisaged to be a non-destructive way to
monitor the storage quality of shelled peanuts.

2. Materials and methods

2.1. Materials

A locally available variety of red color peanut (Arachis hypogaea L.
var. GG 2) were procured from the local market of Kharagpur (West
Bengal, India). Only fresh kernels that were uniform in size were shelled
and used for trials. The analytical grade reagents and solvents were
purchased from Merck (Mumbai, India).

2.2. Peanuts grouping and storage

Before storage trials, the shelled peanuts were distributed into two
sets namely training peanuts (T) and storage peanuts (P). To acquaint
the e-nose against volatile global fingerprint of rancid peanuts, it was
trained using a duplicate set of deliberately rancid peanuts (T1–T5). For
inducing the rancidity development in peanuts, each subset of T (ca.
200 g) were deliberately aged in a rancidity accelerating chamber
equipped with UV light at high temperature (60 °C) and relative hu-
midity (RH) (75%) for one (T1), two (T2), three (T3), four (T4) and five
(T5) days. Post aging treatment, the rancid peanuts were relocated from
rancidity chamber to an incubator maintained at 27 °C and 40% hu-
midity. PV of each subset was periodically tested to ensure the
threshold discard limit (O2 at 10 mmol kg−1) was exceeded. Once the
threshold mark crossed, they were stored frozen before being analyzed
for rancid odors by e-nose training. Unlike T set, the duplicate sets of P
(ca. 2 kg) namely calibration (CP) and validation (VP) were incubated
at 27 °C and 40% RH. A small amount (ca. 20 g) of peanuts were per-
iodically withdrawn (3 and 5 d for CP and VP, respectively) for con-
ventional quality measurements (PV and AV) and continued until the
accumulated rancidity levels surpassed the threshold PV (>O2 at
10 mmol kg−1) (O2 at 1 mEq. = O2 at 0.5 mmol). Post chemical tests,
the peanut samples were stored at −4 °C to arrest the chemical changes
at the time of withdrawal before e-nose analysis.

2.3. E-nose assessment

The fresh and rancid odor (headspace volatiles) of T and P set of

peanuts was evaluated by Fox 4000 e-nose system (Alpha MOS,
Toulouse, France) consisting of a fully automated HS 100 auto-sampler
(Alpha MOS, Toulouse, France) and an array of 18 metal oxide semi-
conductor (MOS) sensors. These sensors are classified as L-type (LY2/
LG, LY2/G, LY2/AA, LY2/GH, LY2/gCTI, LY2/gCT; short chain fatty
acids and aldehydes), P-type (P10/1, P10/2, P40/1, P30/1, P30/2,
P40/2, PA2; aliphatic non-polar compounds), and T-type (T30/1, T70/
2, T40/2, T40/1, TA/2; polar alcoholic and chlorinated compounds)
that are responsive to wide range of volatile compounds (Oliveros et al.,
2002). E-nose offers several advantages over sensory analysis: (1) It
eliminates the subjectivity in sensory tests, (2) minimizes sensory sa-
turation of members during prolonged exposure to an odor, (3) operates
similarly to the human nose by analyzing complex mixtures of volatiles,
and (4) requires no sample pre-treatment and gives quick results.

The operating procedure was as follows: 5 g shelled peanuts were
transferred to a 20 mL glass vial, fitted with Teflon septum, for thermo-
incubation (60 °C for 30 min) to generate and equilibrate the headspace
volatiles. The accumulated volatiles were injected into e-nose system,
assisted by an auto-sampler, using purified air stream (3.5 × 104 Pa) at
a flow rate of 150 mL min−1. The sensors responses were recorded as a
change in resistance (ΔR/R) about base values for 120 s followed by a
recovery period (420 s) to allow the sensors to return to the baseline
resistance. For each sensor, an absolute value of maximum ΔR/R was
extracted. It is important to mention here that the instrument was first
trained to get acquainted with volatile odor fingerprints of rancid
peanuts using T set of peanuts (T1–T5), as described by Upadhyay et al.
(2017b). Later, the P set of peanuts comprising CP (P0–P132) were
analyzed for rancid odors and a combined odor map was generated to
visualize their clustering with T sets. The VP set followed next for e-
nose measurements. The data extracted by e-nose was used to rank the
sensors using fuzzy logic analysis.

2.4. Fuzzy logic analysis

For fuzzy logic assisted ranking of e-nose data, an analogy was
drawn from conventional sensory panel evaluation, and e-nose data
(ΔR/R) were regarded equivalent to hedonic scores (Upadhyay et al.,
2017b). The fuzzy logic analysis is based on assigning certain weight or
importance to specific attributes in food products (Jaya and Das, 2003).
An assumption was made to assign an equal statistical weight to fresh
and rancid peanuts. It is because the response of all the MOS sensors
against odor fingerprints of peanuts have equal impact on their selec-
tion and estimation of discard time. Each sensor was assigned with
different response scale factor (X1, X2, X3, X4, and X5) which is a scalar
quantity and referred to peanut sets (T (T1–T5) and P (P0–P132)) for
which signal response (ΔR/R) ranges: 0–0.25 (not sensitive, X1),
0.25–0.5 (fairly sensitive, X2), 0.5–1 (medium sensitive, X3), 1.0–2.0
(good sensitive, X4), and more than 2.0 (excellent sensitive, X5)
(Table 1) (Upadhyay et al., 2017b). For each sensor, the triangular
fuzzy number (TFN) denoted triangular membership distribution
function and fuzzy triplet set (a–c) (refer supplementary figure, Fig. S1).
The triplet (a–c) was represented by a triangle, where a represented the
fuzzy membership value of 1, b units left to a is one vertex, c units right
to a is another vertex. The triplet set for sensors was calculated by Eqs.
((1)–(3)).

= × + × + × + × + ×a X X X X X(0 1 25 2 50 3 75 4 100 5)/50 (1)

= × + × + × + × + ×b X X X X X(0 1 25 2 25 3 25 4 25 5)/50 (2)

= × + × + × + × + ×c X X X X X(25 1 25 2 25 3 25 4 0 5)/50 (3)

where, X1, X2, X3, X4, and X5 denoted the response scale factors.
The defuzzification of overall sensor signal response scores (0–100)

from triplets was done by calculating centroid value of corresponding
triplets by Eq. (4). The defuzzified values of sensors were used to rank
and screen them. Using the data extracted from fuzzy screened sensors,

R.K. Raigar et al. Postharvest Biology and Technology 132 (2017) 43–50

44



https://isiarticles.com/article/82220

