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CONNECTED NEIGHBORHOODS IN PRODUCTS

ALEJANDRO ILLANES*, JORGE M. MARTÍNEZ-MONTEJANO,
AND KAREN VILLARREAL

Abstract. Let X and Y be metric continua. We consider the following prop-
erty (*): if M is a subcontinuum of X × Y such that πX(M) = X and
πY (M) = Y , where πX and πY are the respective projections on X and Y ,
then M has small connected neighborhoods in X × Y . Property (*) has been
studied by D. P. Bellamy, J. M. �Lysko and the first named author. In this

paper we continue studying property (*) in products of continua. We prove:
(a) the product of homogeneous continua having the fixed point property has
property (*); (b) the product of a solenoid and any Knaster continuum has

property (*); (c) there exists a Kelley continuum X such that X × [0, 1] does

not have property (*); and (d) the product of a chainable Kelley continuum

and [0, 1] has property (*).

1. Introduction

A continuum is a compact connected metric space, a mapping is a continu-
ous function. Given a family of metric continua {Xα : α ∈ J}, the product
X =

∏
α∈J Xα has the following property: full projection implies arbitrary small

connected open neighborhoods (fupcon) provided that for every subcontinuum M
and open subset U of X such that M ⊂ U and πα(M) = Xα for each α ∈ J (πα

is the αth-projection), there exists an open connected subset V of X such that
M ⊂ V ⊂ U .

Clearly, each product of locally connected continua has fupcon property.
A subcontinuum M of a continuum X is ample provided that for each open

subset U of X with M ⊂ U , there exists a subcontinuum L of X such that M ⊂
intX(L) ⊂ L ⊂ U . So X is connected im kleinen at a point p ∈ X provided that
{p} is ample. By [6, Lemma 1], the product X =

∏
α∈J Xα has fupcon property

provided that each subcontinuum M of X projecting onto each Xα is an ample
subset of X.

Ample subcontinua where introduced in [12] and they have been useful to im-
prove the understanding of homogeneous continua.

It is easy to show that if M is an ample subcontinuum of a continuum X, then
the hyperspace C(X) of subcontinua of X (with the Hausdorff metric) is connected
im kleinen at M . In fact, when X is a Kelley continuum (see Section 4), C(X) is
connected im kleinen at an element M ∈ C(X) if and only if M is ample. Thus, if
X is a product with fupcon property, then it is possible to find subcontinua M of
X at which C(X) is connected im kleinen. This is something remarkable, since in
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