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Now define S a cartesian product of finite times with S n M which is a finite semigroup having 

elements 
{

0 , x, x 2 , . . . , x n 
}

of order n . �( S ) is an undirected graph whose vertices are the 

nonzero elements of S . It is a new graph type which is the dot product. k be finite pos- 

itive integer for 0 ≤ { i t } k t=1 , { j t } k t=1 ≤ n, any two distinct vertices of S 
(
x i 1 , x i 2 , . . . , x i k 

)
and (

x j 1 , x j 2 , . . . , x j k 
)

are adjacent if and only 
(
x i 1 , x i 2 , . . . , x i k 

)
·
(
x j 1 , x j 2 , . . . , x j k 

)
= 0 S n 

M 
(under the 

dot product) and it is assumed x i t = 0 S n 
M 

if i t = 0 . 

In this study, the value of diameter, girth, maximum and minimum degrees, domina- 

tion number, clique and chromatic numbers and in parallel with perfectness of �( S ) are 

elucidated. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction and preliminaries 

Historically, Beck had started studying about connections between graph theory and ring theory, especially for commuta- 

tive rings, in 1988. He is also interested in coloring of commutative rings, in [6] . This is continued by adding the zero divisor 

and the dot product graphs. In [3] , Anderson and Livingston had studied about the same relation for zero divisor graphs. 

They denoted the zero divisor graph of a commutative ring by adding the zero elements of a commutative ring. Commuta- 

tive semigroups with nonzero zero divisors are added to zero divisor graphs, see [12–14] . Anderson and Badawi continued 

their study which is about the zero divisor graph of commutative rings, in [4] . The zero-divisor graph is studied by a lot of 

authors in [1,2,7,19] . Akgüne ̧s has defined the graph of monogenic semigroups and found sharp and strict results for some 

parameters in graph theory, see [9] . At last the dot product graph has been studied by Badawi, in [5] , for commutative rings. 

He interested in both graphs TD ( R ) and ZD ( R ). He obtained some results for commutative rings by using an integral domain 

for a ring R with the help of graph theory. Also there are lots of studies about the graph parameters and zero-divisor graphs 

of commutative rings, see [2,10,11,17,18] . 

So we are interested in this study about the dot product graph and monogenic semigroups. 

Let S be a cartesian product of k times S n 
M 

. 

S n M 

= 

{
0 , x, x 2 , . . . , x n 

}
and 

S = S n M 

× S n M 

× · · · × S n M 

for k times 1 ≤ k < ∞ (1) 

Any two non-zero elements of S will be denoted by X = 

(
x i 1 , x i 2 , . . . , x i k 

)
and Y = 

(
x j 1 , x j 2 , . . . , x j k 

)
for { i t } k t=1 , { j t } k t=1 ∈ 

{ 0 , 1 , 2 . . . , n } where x i t = 0 S n 
M 

if and only if i t = 0 . 
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Let us define the dot product function among elements of S . 

X · Y = 

(
x i 1 , x i 2 , . . . , x i k 

)
·
(
x j 1 , x j 2 , . . . , x j k 

)

= x i 1 .x j 1 + . . . + x i k .x j k = x i 1 + j 1 + . . . + x i k + j k 

Then it can be defined that the dot product graph �( S ) is an (undirected) graph with vertices X , Y ∈ S ∗ = S/ { 0 s } such that 

X and Y are adjacent if X · Y = 0 S n 
M 

and we say that the vertices X and Y are adjacent. This is denoted by X ∼ Y if their dot 

product is equal to the zero element of S n 
M 

. 

It is obtained that �( S ) is always connected and its diameter is equal to 2 ( diam (�(S)) = 2 ) and its girth is equal to 3 

( Gith (�(S)) = 3 ). Then we find a way to calculate the maximum degree and minimum degree of �( S ) which is connected 

with n and k . We observe that the domination number is 1. Then we accept that k is 2 to find the clique and chromatic 

number of �( S ). So it is defined that whether �( S ) is perfect graph or not. 

2. Some properties of �( S ) 

First of all, let us see how any two nonzero elements of S are adjacent. It is denoted that any two nonzero distinct 

vertices of �( S ) X = 

(
x i 1 , x i 2 , . . . , x i k 

)
and Y = 

(
x j 1 , x j 2 , . . . , x j k 

)
for 0 ≤ { i t } k t=1 , { j t } k t=1 ≤ n ar e adjacent if X · Y = 0 , in other 

words x i 1 + j 1 + x i 2 + j 2 + · · · + x i k + j k = 0 . This equality is provided by if i t + j t > n or i t is equal to the zero element of S n 
M 

or j t 

is equal to zero element of S n 
M 

for each element t ∈ { 1 , 2 , . . . , k } . In other words; 
(
x i 1 , x i 2 , . . . , x i k 

)
∼

(
x j 1 , x j 2 , . . . , x j k 

)
iff (i t + 

j t > n ) or (i t = 0) or ( j t = 0) , ∀ t ∈ { 1 , 2 , . . . , k } . 
Now we can look at the following definition for the first observation of this study. 

The diameter of a graph G is defined as the set diam (G ) = sup { d(x, y ) : x and y are vertices of G } . 
Theorem 2.1. For any S , as defined in (1) , 

diam (�(S)) = 2 . 

Proof. Let 
(
x i 1 , x i 2 , . . . , x i k 

)
, 
(
x j 1 , x j 2 , . . . , x j k 

)
for 0 ≤ { i t } k t=1 , { j t } k t=1 ≤ n be two distinct and nonadjacent v ertices of �( S ) and 

different from (x n , x n , . . . , x n ) . There are two cases for i t . If i t = 0 then x i t .x n = 0 S n 
M 

since x i t = 0 S n 
M 

. On the contrary, i t � = 0 

then x i t .x n = 0 S n 
M 

since i t + n > n . Thus 
(
x i 1 , x i 2 , . . . , x i k 

)
is adjacent to (x n , x n , . . . , x n ) . Likewise 

(
x j 1 , x j 2 , . . . , x j k 

)
is adjacent 

to (x n , x n , . . . , x n ) , too. Hence the distance between any two distinct vertices is equal to 2. 

diam (�(S)) = 2 . 

�

The girth of a graph is the length of the shortest cycle contained in that graph. If the graph does not contain any cycles, 

then its girth is defined to be infinity. 

Theorem 2.2. The girth of �(S) , as defined (1) , is equal to 3. 

Girth (�(S)) = 3 . 

Proof. At first, we know that (x n , x n , . . . , x n ) is adjacent to 
(
x 2 , x 2 , . . . , x 2 

)
since n + 2 > n . Then 

(
x 2 , x 2 , . . . , x 2 

)
and 

(
x n −1 , x n −1 , . . . , x n −1 

)
are adjacent vertices since n − 1 + 2 = n + 1 > n . Finally 

(
x n −1 , x n −1 , . . . , x n −1 

)
is adjacent to 

(x n , x n , . . . , x n ) since n − 1 + n = 2 n − 1 > n . Thus we have a cycle whose length is equal to 3 over the dot product graph 

of S n 
M 

. So we get; 

Girth (�(S)) = 3 . 

�

It is known that the maximum degree of G is the largest degree in G denoted by � and the minimum degree of G is the 

smallest degree in G (see, [15] ). 

Theorem 2.3. Let S n 
M 

be a monogenic semigroup and S be a cartesian product of finite times S n 
M 

. Then 

�(�(S)) = (n + 1) 
k − 2 and δ(�(S)) = 2 

k − 1 . 

Proof. First, let us choose any vertex of S for the maximum degree of �(S) such as 
(
x i 1 , x i 2 , . . . , x i k 

)
t o be adjacent t o 

(x n , x n , . . . , x n ) for 0 ≤ { i t } k t=1 ≤ n . So x i t .x n = 0 S n 
M 

for each elements i t ∈ { 0 , 1 , 2 , . . . , n } then 

(
x i 1 , x i 2 , . . . , x i k 

)
is equal to 

( n + 1 ) k different vertices. However, it can not be equal to zero element of S and (x n , x n , . . . , x n ) . Hence there are ( n + 1 ) k − 2 

different vertices which are adjacent to (x n , x n , . . . , x n ) . It means the maximum degree of �(S) is equal to ( n + 1 ) k − 2 . 

For the minimum degree of �(S) , we obtain the adjacency vertices of ( x, x, . . . , x ) since it has minimum exponent ele- 

ments of S n 
M 

. Let any vertex of S 
(
x i 1 , x i 2 , . . . , x i k 

)
be adjacent t o ( x, x, . . . , x ) for { i t } k t=1 ∈ { 0 , 1 , 2 , . . . , n } . So either 1 + i t > n or 

i t = 0 have to be provided according to each elements t ∈ { 1 , 2 , . . . , k } since x.x i t = 0 S n 
M 

. Hence it is equal to either n or 0 for 
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