Ample continua in Cartesian products of continua

J.P. Boroński a,b,*, D.R. Prier c, M. Smith d

a National Supercomputing Centre IT4Innovations, Division of the University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, 30. Dubna 22, 701 03 Ostrava, Czech Republic
b Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
c Mathematics Department, Gannon University, 109 University Square, Erie, PA 16541, USA
d Department of Mathematics and Statistics, Auburn University, AL 36849, USA

ARTICLE INFO

Article history:
Received 25 September 2017
Received in revised form 8 February 2018
Accepted 8 February 2018
Available online 12 February 2018

MSC:
primary 54F15, 54B10
secondary 54F50

Keywords:
Solenoid
Knaster continua
Ample subcontinuum

ABSTRACT

We show that the Cartesian product of the arc and a solenoid has the fupcon property, therefore answering a question raised by Illanes. This combined with Illanes’ result implies that the product of a Knaster continuum and a solenoid has the fupcon property, therefore answering a question raised by Bellamy and Łysko in the affirmative. Finally, we show that a product of two Smith’s nonmetric pseudo-arcs has the fupcon property.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The present paper is concerned with the property of having arbitrarily small open neighborhoods for continua in Cartesian products of continua; i.e. given a continuum $M \subseteq X \times Y$ we are interested if

(*) for every open neighborhood U of M there exists an open and connected set V such that $M \subseteq V \subseteq U$.

The property (*) is closely related to the property of being an ample\(^1\) continuum in the product. Recall that M is ample in $X \times Y$ provided that for each open subset $U \subseteq X \times Y$ such that $M \subseteq U$, there exists a subcontinuum L of $X \times Y$ such that $M \subseteq \text{int}_{X \times Y}(L) \subseteq L \subseteq U$. In fact, according to [1], the two

\(^*\) Corresponding author.

E-mail addresses: jan.boronski@osu.cz (J.P. Boroński), prier001@gannon.edu (D.R. Prier), smith01@auburn.edu (M. Smith).

\(^1\) The notion of an ample continuum was introduced by Prajs and Whittington in [10].

https://doi.org/10.1016/j.topol.2018.02.006

0166-8641/© 2018 Elsevier B.V. All rights reserved.
properties are equivalent in the class of Kelley continua. Motivation for the study of ample continua comes from fact that in the hyperspace $C(X \times Y)$ of subcontinua of $X \times Y$ ample continua are the points where $C(X \times Y)$ is locally connected. In this context in [1] Bellamy and Łysko studied the $fupcon$ property of Cartesian products. The product of continua $X \times Y$ has the $fupcon$ property if whenever $M \subseteq X \times Y$ is a continuum with full projections onto coordinate spaces (i.e. $\pi_X(M) = X$ and $\pi_Y(M) = Y$) then M has the property (*), and the notion naturally generalizes to Cartesian products of more than two continua. Bellamy and Łysko showed that arbitrary Cartesian products of Knaster continua and arbitrary Cartesian products of pseudo-arcs have the $fupcon$ property. Furthermore, the property (*) for subcontinua of such products is in fact equivalent to the property of having full projections onto all coordinate spaces. The authors also showed that the diagonal in a Cartesian square G of a compact and connected topological group has the property (*) if and only if G is locally connected, and therefore if G is a solenoid then $G \times G$ does not have the $fupcon$ property. Important related results on ample diagonals can be found in the recent work of Prajs [9]. Motivated by the aforementioned results, Bellamy and Łysko raised the following question.

Question 1 (Bellamy & Łysko [1]). Let K be a Knaster continuum and S be a solenoid. Does $K \times S$ have the $fupcon$ property?

A partial step towards a solution to the above problem was achieved by Illanes, who showed the following.

Theorem A (Illanes [7]). Let X be a continuum such that $X \times [0, 1]$ has the $fupcon$ property. Then for each Knaster continuum K, $X \times K$ has the $fupcon$ property.

Consequently, Question 1 was reduced to the following, potentially simpler problem.

Question 2 (Illanes [7]). Let S be a solenoid. Does $[0, 1] \times S$ have the $fupcon$ property?

We answer this question in the affirmative, and in turn obtain positive answer to Question 1.

Theorem 1.1. Let S be a solenoid. Then $[0, 1] \times S$ has the $fupcon$ property.

Theorem 1.2. Let S be a solenoid and K be a Knaster continuum. Then $K \times S$ has the $fupcon$ property.

In 1985 M. Smith [11] constructed a nonmetric pseudo-arc M; i.e. a Hausdorff chainable, homogeneous, hereditary equivalent and hereditary indecomposable continuum. This continuum has been recently used by the first and third author to provide a new counterexample to Wood’s Conjecture in the isometric theory of Banach spaces [2]. Relying on the result of Bellamy and Łysko that products of metric pseudo-arcs have the $fupcon$ property, we shall show that their result holds also for products of M.

Theorem 1.3. Let M be Smith’s nonmetric pseudo-arc. Any Cartesian power of M has the $fupcon$ property.

Earlier, Lewis showed [8] that for any 1-dimensional continuum X there exists a 1-dimensional continuum X_P that admits a continuous decomposition into pseudo-arcs, and whose decomposition space is homeomorphic to X. Recently, Boroński and Smith [3] extended Lewis’ result to continuous curves of Smith’s nonmetric pseudo-arc. In particular, given any metric 1-dimensional continuum X there exists a continuum X_M that admits a continuous decomposition into nonmetric pseudo-arcs, and whose decomposition space is homeomorphic to X. X_M can be seen as “X of nonmetric pseudoarcs”. Here we observe that using the method of proof of Theorem 1.3 one obtains the following generalization.

2 The abbreviation $fupcon$ stands for **full projections imply connected open neighborhoods.** It was introduced by Illanes in [7].
دریافت فوری
متن کامل مقاله
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات