Optimal energy flow control strategy for a residential energy local network combined with demand-side management and real-time pricing

Xiaodong Yang a, Youbing Zhang a,*, Bo Zhao b, Feiteng Huang a, Yu Chen a, Shuaijie Ren a

a College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
b State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China

ABSTRACT:
Due to the increasing importance of demand-side resources in the energy internet, this paper proposes an optimal energy flow control strategy for a residential energy local network (RELN), which consists of a small number of households, based on the idea of demand-side management. In particular, a type of optimal and dynamic RELN energy consumption scheduling framework is formulated to minimize the daily total operation cost, while fully considering the output forecast error of renewable energy sources (RESs), the consumption preference of users and the status of the energy storage system. In this framework, we provide a unified appliance model to group various types of appliances, which are connected to the network, into a physical model with the same attributes, and a comprehensive real-time pricing mechanism between the RELN and power distribution company (PDC) is developed based on the generalized total load to guide the electricity consumption behavior of the end-users and to also balance the total residential load. On this basis, a mixed integer programming (MIP) model for dynamic energy management optimization of the RELN is optimized at each decision period and integrated into a model predictive control method to reduce the negative impacts of forecast errors of RESs, thereby realizing an optimal and automatic energy flow control for the RELN. Finally, the effectiveness of the proposed RELN energy flow management framework is verified using several case studies.

Keywords:
Residential energy local network, Energy flow control, Plug-in electric vehicle, Demand-side management, Comprehensive real time pricing

Nomenclature
Abbreviations
DSM demand-side management
ESS energy storage system
EI energy internet
EMC energy management center
IBR inclining block rate
MPC model predictive control
PEV plug-in electric vehicle
PV photovoltaic
PDC power distribution company
PAR peak-to-average ratio
RELN residential energy local network
RES renewable energy source
RTP real-time pricing
SOC state of charge
TOU time-of-use
V2G vehicle to grid
WT wind turbine

Indices
i ∈ R index of households in the RELN
j ≤ N i index of electric appliance in i-th household
k ∈ {1, 2, ..., K} index of periods
l ∈ L index of PEVs

Parameters
κ total number of periods of a day
Δt time interval
p k T / p k WT power output of PV/WT at period k
i j T / i j PI plug-in time and the planned departure time of the l-th PEV
s i T / s i PEV initial SOC/ the expected SOC of the l-th PEV
Q i battery capacity of the l-th PEV

*Corresponding author at: College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
E-mail address: youbingzhang@zjut.edu.cn (Y. Zhang).

0378-7788 © 2016 Elsevier B.V. All rights reserved.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات