ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 50-1 (2017) 43364341

Supporting the Development of
Interdisciplinary Product Lines in the
Manufacturing Domain

Matthias Kowal * Sofia Ananieva** Thomas Thum *
Ina Schaefer *

* TU Braunschweig, Germany
{m.kowal, t.thuem, i.schaefer} @tu-braunschweig.de
** FZI Research Center for Information Technology, Germany
ananieva@fzi.de

Abstract: The increasing demand for highly customizable manufacturing systems leads to
an extreme number of possible machine variants. Feature models are often used to manage
this system diversity. The development and maintenance of feature models are error-prone and
time-consuming tasks, especially considering industrial-size models with thousands of features.
In many cases, engineers might want to focus only on a few features relevant for their own
domain. Additionally, each change may lead to anomalies in the feature model. In this paper,
we present an approach to provide engineering support by giving user-friendly explanations for
hidden dependencies and anomalies in feature models.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Variability Modeling, Engineering, Machine Manufacturing, Variant and Version

Management,

1. INTRODUCTION

Customers have a rising demand for fully customizable
products that can be tailored to their specific require-
ments (Pohl et al. (2005)). In return, manufacturers have
to pay more attention to variability and its management to
deal with the rising complexity introduced by the variant
diversity, e.g., as in the automotive domain. Engineers
tried to reduce this problem with the introduction of
product lines several decades ago (Kang et al. (1990)). A
product line is comprised of a set of related systems that
share several commonalities and variabilities. For example,
each car must have a radio making it a common feature,
but a navigation system is only optional. The goal of prod-
uct lines is to foster reuse potential, reduce maintenance
effort and provide a better cost-efficiency (Czarnecki and
Eisenecker (2000); Pohl et al. (2005)). Feature models are
often used to express the variability as well as dependencies
in a product line (Benavides et al. (2010)). Thousands
of features and dependencies between these features are
common in industrial-size feature models (Tartler et al.
(2011)). Engineers often encounter two major problems
while dealing with feature models.

First, product line development is an interdisciplinary pro-
cess involving multiple developers from different domains,
e.g., mechanical-, software-, and electrical engineering.
Hence, the feature model contains information that may
not be relevant for a certain domain or developer and can
be hidden (Lettner et al. (2015); Feldmann et al. (2015);
Ananieva et al. (2016)). It is crucial that no information
is lost during such a process. Dependencies between fea-
tures from different domains must still be respected and
visible to the developer. In addition, hidden dependencies
may occur in the partial feature model due to constraints

across the complete product line. We refer to these hidden
dependencies as implicit constraints and provide engineer-
ing support by giving explanations why they are present
leading to more precise communication between different
disciplines and help identify unintended interferences.

Second, the maintainability of a feature model decreases
with its size (Mens and Demeyer (2008)). Evolution of a
feature model due to changing requirements, the addition
of new features or dependencies has an increasing possi-
bility to introduce anomalies (Mens and Demeyer (2008)).
Anomalies can be rather harmless such as redundancy
meaning that semantic information is modeled in multiple
ways which is usually not preferable (von der Maflen and
Lichter (2004)). However, anomalies can also be severe
such as dead features. It is not possible to select a dead
feature for any variant of the system making it useless.
In order to support developers in the removal of anoma-
lies, they must be detected and explained to comprehend
the cause why an anomaly has occurred in the feature
model (Benavides et al. (2010); Kowal et al. (2016).

In this paper, we present an approach supporting engineers
in both aspects: (1) depicting partial feature models with
all implicit constraints as well as their explanation and (2)
giving user-friendly explanations for anomalies, without
introducing new concepts and notations for feature models
or increasing the modeling workload.

2. CASE EXAMPLE: PICK AND PLACE UNIT

The running example is a product line form the automa-
tion engineering domain. The Pick and Place Unit (PPU)
is a universal production demonstrator for studying evo-
lution and variability (Legat et al. (2013)). It consists

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2017.08.870

Matthias Kowal et al. / IFAC PapersOnLine 50-1 (2017) 43364341

g
PPUC

Legend:

WorkPieces Conditions Platiorm Type | | Additional Functionaliies | g andatory

o Optional
or
Selfhealing | Diagnosis | /\ Alternative
Abstract
Concrete

Size PositioningC Environment

AN NN N

Smal | | Large | Discrete = Continuous | Smooth | | Rough || Vendor1 | Vendor2

muC | PLC

Fig. 1. Customer feature model (Legat et al. (2013))

of multiple variants and provides us with source code,
UML diagrams and four feature models depicting different
domains involved in the development of the PPU.

2.1 Feature Models

A feature model consists of a hierarchically arranged set
of features and has typically a tree-like graphical repre-
sentation. Fig. 1 shows a feature model of the PPU from
the customer’s point of view. Parent-child relationships are
expressed using the following elements and semantics (see
legend in Fig. 1 for the graphical representation (Kang
et al. (1990); Czarnecki and Eisenecker (2000)):

e Mandatory — feature must be selected, if parent is,
e Optional — feature is optional,

e Or — one or more subfeatures can be selected,

e Alternative — only one subfeature can be selected.

For example, the PPU can handle two types of workpieces
simultaneously with Small and Large. The operating en-
vironment can either be Rough or Smooth, but not both
at the same time. Selfhealing and Diagnosis are optional
features. Abstract features are only used for structural
aspects and do not contain realization artifacts, e.g., source
code. Dependencies between features that are not part of
a parent-child relationship are expressed with cross-tree
constraints using propositional logic, X = Y. In case
of the PPU feature model depicted in Fig. 1, cross-tree
constraints are not present.

The development and maintenance of the PPU involves
multiple disciplines with mechanical, software and elec-
trical engineering. The customer feature model in Fig. 1
does not represent all disciplines in a sufficient manner
which is why three additional engineering feature models
are available (Legat et al. (2013); Feldmann et al. (2015)).
Fig. 2 depicts the individual models describing the PPU in
more detail for each domain. It is obvious that some similar
features can be identified in multiple feature models, while
other features are restricted to one model, since they are
not relevant for other domains. The goal of separate fea-
ture models is to reduce the complexity for the engineers
and let them focus on important parts for their domain.
Several feature models in isolation are not sufficient to
completely describe a product line. It is mandatory to ex-
press dependencies between the individual feature models
as well. The developers of the PPU created a mapping
matrix to express these global constraints connecting the
customer feature model to the engineering models (Legat
et al. (2013); Feldmann et al. (2015)).

For example, the customer can select the small workpieces
resulting in the selection of the features ChangeoverArmM
in the mechanical, ChangeoverArm and VacuumGripper in
the electrical and ChangeoverArmControl in the software
model. Fig. 3 shows only an extract of the original matrix
defined by Feldmann et al. (2015).

4337

PPUM

LiftingLowering

N

ChangeoverArmM CylinderM

(a) Mechanical feature model
PPUE

Electrics Sensors

) — T

Cylinder ~ Chang itioni Safety

T .

Inductive | | Micro | | F

Pneumatics

(b) Electrical feature model

PPUS

Lifting Lowering Control Position Control Mode of operation Additional FunctionalitiesS

CylinderControl | | ChangeoverArmControl | | DiscreteS | | ContinuousS | Automatic || Manual | | Setup | | SelfhealingS | | DiagnosisS

(c) Software feature model

Fig. 2. Engineering feature models of the PPU (Legat et al.
(2013); Feldmann et al. (2015))

Developer's point of view
Mech Electrics/ Electronics Software
Lifting/ Electr./ Lifting/ Lowe-| Position
S <
Lowering EREIM. Electron TS ring Control | Control
E s Change- | Vacuum | Change- Changeover
2 | g g over amn | Gripper | over amn am Control
a N
x || g Chaﬂge—’ (Cylinder) (Cyinder
E o = |overam /| Vacuum Control)
5| = | Cylinder | Gripper

Fig. 3. Extract from the mapping matrix (Feldmann et al.
(2015))

2.2 Problem Statement

Engineers most likely maintain and develop only the fea-
ture model for their own domain. However, crucial in-
formation may be lost by considering just a portion of
the product line, e.g. the dependencies expressed by the
mapping matrix. The number of dependencies can eas-
ily add up to several thousands in industrial-size feature
models making it unreasonable to present all of them,
since only a small part is relevant to individual engineers.
Additionally, the product line dependencies can produce
implicit constraints in the considered partial feature model
that are not visible at first. Regardless of the model part,
each change may lead to an inconsistency. While the de-
tection of such anomalies is well-researched, the actual
explanation is often neglected or completely missing. We
derive and present all relevant dependencies for an arbi-
trary partial feature model as well as explain the cause
of an implicit constraint and all appearing anomalies. To
maximize usability, we refrained from introducing new
modeling concepts or notations while providing a fully
functional open-source implementation in the FeatureIDE
framework.

3. IMPLICIT CONSTRAINTS IN FEATURE MODELS

The definition of a mapping matrix is a successful first
step to express dependencies between separate feature
models (Feldmann et al. (2015)). Nevertheless, it has some
drawbacks in terms of scalability and it is difficult to ana-
lyze. The connection of the individual engineering models

ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/

https://isiarticles.com/article/85623

