Electrical Power and Energy Systems 99 (2018) 744-755

Contents lists available at ScienceDirect 2 INTERNATIONAL JOURNAL OF
EiEcTricaL
lectrical d .y
Electrical Power and Energy Systems -
SQYSTEMS
journal homepage: www.elsevier.com/locate/ijepes et
Linear method for steady-state analysis of radial distribution systems )

Check for
updates

Anna Rita Di Fazio™*, Mario Russo?, Sara Valeri®, Michele De Santis”

2 Dipartimento di Ingegneria Elettrica e dell’Informazione, Universita di Cassino e del Lazio Meridionale, Cassino, Italy
® Engineering Department, Universita Niccolo Cusano, Rome, Italy

ARTICLE INFO ABSTRACT

Linear methods for steady-state analysis of distribution systems are getting more and more important due to the
spreading of distributed energy resources, such as distributed generation, storage systems, active demand. This
paper proposes a new linear method based on a Jacobian approach for radial distribution network with lateral
derivations and distributed energy resources. The set of the linear equations modeling the distribution system is
firstly presented and, then, solved in a closed form. It includes the full 7-model for lines, ZIP model for un-
controlled loads, both P-Q and P-V control for distributed energy resources. The adoption of a peculiar set of
modeling variables and the radial topology of the network allows to obtain high accuracy and low computational
times. The effectiveness of the method is tested on both a 24-nodes and a 237-nodes network. The method is
firstly applied to sensitivity analysis and compared with other linearized methods in terms of accuracy and
computational efficiency; then, it is applied to the power flow analysis and compared with the classical non
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linear load flow.

1. Introduction

Linear methods for analyzing steady-state operation of distribution
systems are gaining more and more importance in the planning and
operation activities, due to the wide and rapid spread of distributed
energy resources (DERs) (i.e. distributed generation, storage systems,
active demand). Typical applications of linear methods are power flow
analysis [1-3], power system optimization studies [4,5], power losses
estimation [6], and sensitivity analysis for hosting capacity evaluation
[71, for pricing and placement of DERs and control devices [8,9], for
Volt/VAr control [10,11].

A widely-used approach in linear methods is to evaluate a given
initial operating condition of the distribution system and, then, the
sensitivity coefficients that linearly relate the variations of network
electrical variables to parameter changes (i.e. powers injected by dis-
tributed generators, power exchanges by storage systems and by vol-
tage control devices). In the present paper, this approach is adopted and
attention is focused only on the impact of active and reactive powers
injected/absorbed by DERs on the electrical variables of the network.

The initial operating condition is generally obtained by solving a
single load-flow problem in a base-case [12]. On the other hand, several
methods have been proposed to evaluate sensitivity coefficients, which
can be classified into three main categories: perturb and observe
methods, circuit theory methods and Jacobian-based methods.

Perturb and observe methods evaluate the sensitivity coefficients as
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numerical derivatives, that is the ratio between the finite variation of an
electrical variable (observation) caused by an assigned DER power
variation (perturbation). The variations are evaluated by either simu-
lation [9] or actual measurements [13,14] or load-flow calculation
[15,16]. Accuracy of these methods are strictly dependent on the eva-
luation technique (f.i. high for load-flow and low for measurements),
whereas the computational efficiency is quite low if many DERs are to
be considered.

The second category includes the circuit theory methods which
derive the sensitivity coefficients from linear circuit equations, such as
the network impedance matrix [10,15,17,18], the line voltage drop
expression [11], the two-port network equations [19], the adjoint
network [20]. These methods present a trade-off between accuracy of
the results and computational efficiency, because the latter one can be
improved only by introducing model approximations and, conse-
quently, reducing accuracy.

The third category includes the Jacobian-based methods which, in
their classical formulation, obtain the sensitivity coefficients from the
inverse of the Jacobian matrix, derived from the load-flow solution
[4,8]. Since these methods use the analytical derivatives, they are the
most accurate but, on the other hand, present two main drawbacks: i.
the Jacobian matrix is available from the load-flow solution obtained by
the Newton-Raphson technique, which presents well-known con-
vergence problems in distribution systems; ii. the computational effi-
ciency significantly decreases with the increase of the number of the
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Nomenclature

Pyv,Qumy powers injected by the MV voltage source

Py,Qry powers in-flowing LV busbars

B,Q, powers out-flowing the node n

P"Qi"  powers in-flowing series parameters of the 7-model of the
line n

PMQ  powers out-flowing series parameters of the 7-model of

the line n
Phne Qline powers out-flowing the line n
Pload Qload power consumptions at the node n
P Qder powers injected by DERs at the node n

Pl Qlat powers flowing into the lateral derived from the node n
Vi square voltage at the MV busbars

Vi, square voltage at the LV busbars

%4 square voltage amplitude at the node n

nodes in the network, due to the Jacobian matrix inversion. To over-
come the first drawback, in [16] the analytical derivatives are derived
from the Distflow equations [21] exploiting the radial topology of
distribution networks. However, the method in [16] does not overcome
the second drawback. In fact, for each DER power variation, the related
sensitivity coefficients are evaluated by solving a large set of linear
equations.

In the present paper, extending and improving the approach pre-
sented in [22], a novel Jacobian-based method for the steady-state
analysis of distribution systems is proposed by exploiting the radial
network configuration, typically adopted in distribution system opera-
tion. Starting from an initial operating point, the proposed method di-
rectly provides the closed-form analytical expressions of the sensitivity
coefficients, which linearly relate the variations of the active and re-
active power flows and of the square nodal voltage amplitudes to the
powers injected/absorbed by each DER connected to the network.

The main contributions of the paper are: (i) the model of the basic
element, namely the line-node component (LNC), is extended to ac-
count for the full 7-model of lines, for voltage-dependent load models,
for different types of DER controls, and for lateral derivations; (ii) the
set of the equations representing the linear model of the whole dis-
tribution system is provided, in which the adoption of a new set of
variables for the analytical derivatives assures an improvement of the
accuracy of the results with respect to other Jacobian-based methods;
(iii) the closed form solution of the low-voltage (LV) distribution system
is derived increasing the computational efficiency, especially for large
distribution networks; (iv) the algorithm implementing the closed-form
solution is outlined. The proposed model is developed with reference to
balanced operating conditions, but its extension to unbalanced dis-
tribution systems is viable and will be presented in future studies.

The paper is organized as follows. In Section 2, the modeling
equations of the supplying system as well as of the LV network are
presented. In Section 3, the linearized model of the distribution system
is firstly derived and, then, analytically solved thus obtaining its closed-
form expression. Eventually, the method is firstly applied to sensitivity
analysis and compared with other linearized methods in terms of ac-
curacy and computational efficiency; then, it is applied to the power
flow analysis and compared with the classical non linear load flow.

2. Distribution system modeling

Fig. 1 shows a typical LV distribution system with radial topology
composed of a supplying system and the LV network. Reference is made
to a LV distribution system but the analysis can be applied to medium-
voltage (MV) distribution systems operating in radial configuration.
Assumptions related to the modeling of the supplying system and of the
LV network, which includes uncontrolled loads and DERs (i.e. photo-
voltaic generators, controllable loads, and storage systems), are de-
scribed in the following.

2.1. Supplying system

The supplying system includes the MV distribution system and a
MV/LV transformer. The former one is modeled by a voltage source
imposing the no-load voltage at the MV busbar VZ, in series with the
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Fig. 1. Radial LV distribution system.

Fig. 2. Equivalent circuit of the supplying system.

short-circuit impedance X,.. The transformer is modeled by its series
parameters (i.e. resistance R, and leakage reactance X,.). The equiva-
lent circuit of the supplying system is shown in Fig. 2, being
Xog = Xee + Xy, and described by the Distflow equations [21]:

Puv = Py + Ry (Pv® + Q1)) Viy
Qumv = Quv + Xoq (Prv? + Q) VEy
Vi = Viv + 2Ry Py + XeqQuy)

+ Re? + X2)(Pv? + Q2)IVE, 1)

2.2. LV network

The LV network includes several feeders, each one composed of a
main and different laterals. Each main and lateral is represented by a
series of line-node components (LNCs). The generic nth LNC is com-
posed of (Fig. 3): i. the line n between nodes n—1 and n; ii. the node n.

The line is modeled by the 7 equivalent circuit with series para-
meters (resistance R, and reactance X,) and shunt parameters (con-
ductance G, and susceptance B,). Applying Kirchhoff laws and Distflow
equations to the circuit in Fig. 3 yields:
P = P=Ry (B + Q' DIVi
=Xa (B + QY DIViy
Vi = Vioi—2R\ P + X, Q"

+(Re? + XDBY? + QD Viy
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