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A B S T R A C T

Mode identification from post-disturbance “ringdown” responses can provide vital information concerning the
dynamic performance and the stability margins of power systems. Therefore, several measurement-based
identification techniques have been proposed in the literature to analyze ringdown responses of transmission
systems and provide close to real-time estimation of the modal content. However, the applicability of these
methods has not been thoroughly investigated for the analysis of active distribution networks (ADNs). Scope of
this paper is to evaluate the applicability and the performance of eight measurement-based system identification
techniques for the modal analysis of ADNs. The examined methods are used to identify the dominant oscillatory
modes contained in ringdown responses of different types of signals. The Monte Carlo method is applied to
investigate the influence of several parameters on the accuracy and efficiency of the identification procedure,
while laboratory measurements are used to further demonstrate the accuracy of the examined methods. Practical
issues encountered in the application of the identification techniques for the analysis of ADNs are discussed and
potential solutions are proposed. Results reveal that although most of the examined techniques perform sa-
tisfactorily enough and thus can be readily employed for the modal analysis of ADNs, the Vector Fitting and the
Hybrid FD/TD seem to be the most effective methods in terms of accuracy, robustness and computational ef-
ficiency.

1. Introduction

Traditionally, modal analysis of transmission power systems is
performed by applying eigenanalysis on detailed linearized power
system models [1–3]. However, this approach lacks of usability in cases
of real-time applications and large power system configurations, due to
its inherent computational burden [3]. Additionally, the implementa-
tion of model-based, eigenvalue analysis methods is rather limited in
distribution grids, since it is practically impossible to keep updated over
time detailed linearized distribution system models, due to the inter-
mittent operation of renewable energy sources which causes frequent
changes in the network topology and operational state.

To overcome these issues, the application of measurement-based
system identification techniques has been proposed as supplementary
solution to perform modal analysis and to predict stability margins of
power systems [1,4]. Nowadays, system identification techniques gain
significant interest due to the increased installation of phasor

measurement units (PMUs) at transmission networks [5] and of fre-
quency disturbance recorders (FDRs) [6] and micro-PMUs (μ-PMUs) [7]
at distribution grids. Compared to traditional offline eigenvalue ana-
lysis methods, measurement-based identification techniques allow the
close to real-time estimation of oscillatory modes, enhancing drastically
the dynamic analysis and control of power systems [4]. In this context,
real-time monitoring, transient stability assessment, online develop-
ment of dynamic equivalents and fine-tuning of power system model
components as well as wide-area control are some of the newly in-
troduced applications deployed nowadays in distribution networks
[8,9].

Most of the above applications can be performed by analyzing
measured signals acquired either from operational ambient or ring-
down responses [1,4,10]. In the former, modal parameters are identi-
fied using responses excited by small load variations [11,12], con-
taining high levels of noise and low mode information density
[2,12,13]. On the other hand, ringdown responses, obtained during or
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after major disturbance events (short circuits, line tripping, large load
step-up, etc.) [4], contain higher levels of mode information compared
to ambient data, facilitating the accurate identification of modal para-
meters [1].

Over the past decades, several system identification techniques have
been proposed to perform modal analysis of power systems using
ringdown responses. Considering the form of data they use, measure-
ment-based system identification techniques can be classified into time-
domain (TD) and frequency-domain (FD) [10]. The former operate di-
rectly on the measurement time series [4,10], i.e. on instantaneous [14]
and/or phasor signals, while the latter are applied to the spectrum of
the measured signals [10]. The most known measurement-based iden-
tification technique is the Prony method, originally proposed in [15].
Other popular identification techniques include the matrix pencil (MP)
method [16], the eigenvalue realization algorithm (ERA) [17], the sub-
space state-space system identification (N4SID) [18], the prediction
error method (PEM) [19], and the application of the fast Fourier
transform (FFT) combined with the sliding window technique [20,21].
In [22], the use of the dynamic mode decomposition is discussed for the
analysis of oscillatory modes in transmission systems, while in [23,24]
the application of Kalman filter is investigated. The use of Teager-Kaiser
energy operator is analyzed in [25], while in [26], autoregressive
moving average exogenous (ARMAX) models are employed to identify
oscillatory modes. Additionally, in [27], mode identification is per-
formed using Zolotarev polynomials, while in [28] the digital Taylor-
Fourier transform is introduced as a method for the identification of
low-frequency electromechanical modes. In [29,30], the Vector Fitting
(VF) algorithm is introduced as a technique for the modal analysis of
power systems, while in [2] a hybrid TD/FD method is proposed.

Most of the above-mentioned identification techniques use high-
order models that contain additional artificial modes apart from the
dominant ones, in order to supress noise and signal offsets and to im-
prove the estimation accuracy [2,31]. However, this approach limits
the applicability and flexibility of the methods regarding automatic
real-time monitoring [2,31]. Therefore, new methodologies are re-
quired to automatically identify the dominant system modes, ensuring
the development of low-order models.

Additionally, it is worth noticing that all the above-mentioned
identification techniques have been extensively evaluated only for the
analysis of conventional transmission systems. However, the dynamic
behavior of modern power systems has been altered drastically, due to
the constant shift from traditional passive power systems to active
networks, especially at the distribution level, where the concepts of
active distribution networks (ADNs) and micro-grids (MGs) have been
introduced. According to the CIGRE WP C4.605, ADNs are “distribution
networks with a significant amount of distributed generation (DG) which at
specific periods of time (e.g. at minimum loading conditions) is a net ex-
porter of active power, but at other times (e.g. at maximum loading condi-
tions) may be a net importer of active power” [32]. Accordingly, Micro
Grids (MGs) can be defined as “a type of a low voltage ADNs being
comprised of an aggregation of loads and micro-generation systems (in-
cluding local storage devices), typically operated in a two-level hierarchical
management and control scheme supported by communication infrastructure
assuring its operation as a controlled entity (aggregated load or generator)
either connected to the main distribution network, or autonomously when
isolated from it” [32].

Consequently, the application of conventional identification
methods for the analysis of ADNs and MGs constitutes a challenging
task, due the intermittent nature of renewable energy sources as well as
due to the high frequency modes and the significant noise levels present
in such systems [33,34]. In fact, in the literature there are only few
publications discussing the application of specific measurement-based
identification techniques for the modal analysis of ADNs [8,33].
Therefore, a systematic evaluation and comparison of the most known
identifications methods is required to investigate their performance and
applicability under the new operating conditions arising from the

advent of ADNs and MGs.
Scope of this paper is to evaluate the performance of eight system

identification techniques already proposed in the literature to analyze
the modal content of ringdown responses in ADNs as well as to propose
an iterative procedure to automatically identify the dominant modes
contained in measured ringdown responses. Specifically, the most
widely used TD and FD methods are considered and evaluated. The
examined TD techniques include the Prony, the ERA, the MP, the N4SID
and the PEM methods. On the other hand, the FD methods include the
conventional FFT, the VF algorithm as well as a hybrid FD/TD method.

The algorithmic details and distinct characteristics of each method
are briefly discussed. The performance of the identification techniques
is evaluated by applying the Monte Carlo (MC) method to artificially
distorted data of simulated responses on a medium-voltage ADN that
includes different types of DG units and loads. A comparative analysis is
conducted, investigating the effect of the type of signal used in the
identification procedure, the impact of noise and sampling rate on the
accuracy of the estimates as well as the effect of the disturbance level on
the performance of the examined identification methods. Finally, the
accuracy of the most effective identification methods is further eval-
uated using measurements, acquired from a laboratory-scale MG.

The paper is organized as follows: In Sections 2 and 3, the theore-
tical background of dynamic system analysis and the formulation of the
examined identification techniques are briefly described, respectively.
The methodology for the automatic determination of the optimal model
order is presented in Section 4, while in Section 5, the impact of several
parameters on the accuracy of the examined identification methods is
investigated using dynamic responses acquired through detailed RMS
simulations conducted in the NEPLAN software. In Section 6, the per-
formance of the most effective methods is further evaluated using la-
boratory measurements. The findings of the paper are summarized and
discussed in Section 7.

2. Background

2.1. Linear systems

The dynamic performance of a multiple-input multiple-output
(MIMO) system, subject to small perturbations, can be analyzed using
the state-space representation of (1) in continuous-time form by as-
suming that the system is linear time-invariant (LTI) [1]. The set of
equations in (1) is evaluated at the operating point, around which the
perturbation is considered [35].

= + +t t t tx Ax Bu ẇ ( ) ( ) ( ) ( ) (1a)

= + +t t t ty Cx Du v( ) ( ) ( ) ( ) (1b)

Vectors ∈ ×Ry m 1 and ∈ ×Ru r 1 are the output and input system
responses, respectively, while ∈ ×Rx n 1 is the state vector. ∈ ×RA n n,

∈ ×RB n r , ∈ ×RC m n and ∈ ×RD m r are the system matrices, while
∈ ×Rw n 1 and ∈ ×Rv m 1 are the measurement and process noise vectors,

respectively. The homogeneous response of each system state can be
described as the sum of the influence of the n system modes [1]:
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where = ±λ σ jωi i i denote the eigenvalues of A, while =ω πf2i i and σi
are the angular frequency and damping factor, respectively. Moreover,

= ±c a e· /2i i
jφi is the residue of the i-th mode, while ai and φi are the

corresponding amplitude and phase angle.
Let us assume that (1) is discretized, with =F T1/s s samples per

second and N generated samples. The discrete-time state-space re-
presentation of the system at time instant k is:

= + ++ ux Ax B wk k k k1 (3a)

= + +y Cx Du vk k k k (3b)
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