
Future Generation Computer Systems 84 (2018) 22–31

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

On the adequacy of lightweight thread approaches for high-level
parallel programming models
Adrián Castelló a,*, Rafael Mayo a, Kevin Sala b, Vicenç Beltran b, Pavan Balaji c,
Antonio J. Peña b

a Universitat Jaume I de Castelló, 12071 Castelló de la Plana, Spain
b Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
c Argonne National Laboratory, Lemont, IL, USA

h i g h l i g h t s

• Design and implementation of OpenMP and OmpSs on top of lightweight threads.
• Analysis of the relationship between programming models and lightweight threads.
• Performance evaluation in different OpenMP and OmpSs scenarios.

a r t i c l e i n f o

Article history:
Received 17 August 2017
Received in revised form 15 December 2017
Accepted 8 February 2018
Available online 21 February 2018

Keywords:
Lightweight threads
OpenMP
OmpSs
GLT
POSIX threads
Programming models

a b s t r a c t

High-level parallel programmingmodels (PMs) are becoming crucial in order to extract the computational
power of current on-node multi-threaded parallelism. The most popular PMs, such as OpenMP or
OmpSs, are directive-based: the complexity of the hardware is hidden by the underlying runtime system,
improving coding productivity. The implementations of OpenMPusually rely on POSIX threads (pthreads),
offering excellent performance for coarse-grained parallelism and a perfect match with the current
hardware. OmpSs is a task oriented PM based on an ad hoc runtime solution called Nanos++; it is the
precursor of the tasking parallelism in the OpenMP tasking specification. A recent trend in runtimes
and applications points to leveraging massive on-node parallelism in conjunction with fine-grained and
dynamic scheduling paradigms. In this paper we analyze the behavior of the OpenMP and OmpSs PMs
on top of the recently emerged Generic Lightweight Threads (GLT) API. GLT exposes a common API for
lightweight thread (LWT) libraries that offers the possibility of running the same application over different
native LWT solutions. We describe the design details of those high-level PMs implemented on top of
GLT and analyze different scenarios in order to assess where the use of LWTs may benefit application
performance. Our work reveals those scenarios where LWTs overperform pthread-based solutions and
compares the performance between an ad hoc solution and a generic implementation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the past few years, the number of cores per processor has
increased steadily, reaching impressive counts such as the 260
cores per socket in the Sunway TaihuLight supercomputer [1],
whichwas ranked#1 for first time in the June 2016 TOP500 List [2].

The trend followed in that list indicates that future exascale sys-
tems will support massive on-node parallelism, deploying thou-
sands of cores per socket. Extracting the computational power

* Corresponding author.
E-mail addresses: adcastel@uji.es (A. Castelló), mayo@uji.es (R. Mayo),

ksala@bsc.es (K. Sala), vbeltran@bsc.es (V. Beltran), balaji@anl.gov (P. Balaji),
antonio.pena@bsc.es (A.J. Peña).

of those machines will thus require efficient libraries and pro-
gramming models (PMs). The most popular approaches to obtain
acceptable on-node performance rely on POSIX threads (pthreads)
application programming interface (API) [3] or directive-based
PMs such as OpenMP [4] or OmpSs [5].

Directive-based PMs are usually implemented on top of the
pthreads API, which matches perfectly the current hardware and
coarse-grained parallelism. Because of the high cost of manage-
ment, however, it fails to accommodate new software paradigms
that target dynamically scheduled, fine-grained parallelism.

Several lightweight thread (LWT) libraries have been imple-
mented in the last years to tackle fine-grained and dynamic soft-
ware requirements [6]. Each LWT solution features its own PM and
target environment. Some of these solutions are implemented for

https://doi.org/10.1016/j.future.2018.02.016
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.02.016
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.02.016&domain=pdf
mailto:adcastel@uji.es
mailto:mayo@uji.es
mailto:ksala@bsc.es
mailto:vbeltran@bsc.es
mailto:balaji@anl.gov
mailto:antonio.pena@bsc.es
https://doi.org/10.1016/j.future.2018.02.016


A. Castelló et al. / Future Generation Computer Systems 84 (2018) 22–31 23

a specific Operating System (OS), such as Windows Fibers [7] and
Solaris Threads [8]. Comparedwith those, ConverseThreads [9] and
Nanos++ [10] support a specific high-level PM; Charm++ [11] and
OmpSs [5], respectively. There are also general-purpose solutions
such as MassiveThreads [12], Qthreads [13], and Argobots [14].
The Generic Lightweight Threads (GLT) API [15], [16] is an ef-
fort to unify these LWT solutions under a unique PM in order to
foster productivity and portability with negligible overhead. This
lightweight layer offers the common functionality of LWT solutions
and is currently implemented on top of MassiveThreads, Qthreads,
and Argobots. As a result, a runtime or application based on GLT
requires no changes in order to be executed on top of any of these
three LWT solutions.

In this paper we analyze common OpenMP and OmpSs parallel
patterns and discuss how LWTs deal with them, in comparison
with traditional approaches. While OpenMP is the most widely-
adopted directive-based PM, OmpSs is the precursor of task-
parallelism and features a runtime which leverages a custom LWT
implementation. We evaluate our implementations and compare
their performances with those obtained when using the original
runtimes.

In order to perform the comparison, we have implemented the
OpenMP and OmpSs runtimes on top of the GLT API, called Generic
Lightweight Thread OpenMP (GLTO) and Generic Lightweight
Thread OmpSs (GOmpSs), respectively. Our OpenMP implemen-
tation is based on the open-source BOLT project [17], which is
in turn based on LLVM [18]. The LLVM OpenMP runtime shares
the code developed in the Intel OpenMP [19] solution. Our OmpSs
version is based on the Nanos++ library [10] from the Barcelona
Supercomputing Center (BSC).

Our study reveals that the use of LWTs instead of pthread-based
approaches in theOpenMPPMmayyield performance benefits, de-
pending on the application nature. In addition, our results expose
that theperformancewith theOmpSs runtime implementedon top
of GLT is close to that obtained with an ad-hoc implementation,
improving the task management in fine-grained code tasks.

In summary, themain contributions of this paper are as follows:
(1) design of OpenMP and OmpSs runtimes on top of a generic LWT
API; (2) analytical study of the relationship between high-level
PMs and LWT solutions; and (3) the experimental performance
evaluation of that relationship in different OpenMP and OmpSs
scenarios.

The rest of the paper is organized as follows. Section 2 provides
some background information about OpenMP, OmpSs, and GLT.
Section 3 reviews a few related works. Section 4 details the GLTO
implementation and Section 5 describes the GOmpSs implemen-
tation. Section 6 provides an in-depth performance analysis of the
distinct scenarios. Finally, Section 7 contains our conclusions.

2. Background

In this section we review the OpenMP and OmpSs PMs and
describe the GLT implementation and its interaction with the un-
derlying LWT libraries.

2.1. OpenMP

The OpenMP API supports multiplatform shared-memory mul-
tiprocessing programming, and current implementations cover
most architectures and operating systems. OpenMP offers a
directive-based PM to parallelize a code by means of ‘‘pragmas’’.
Intel and GNU offer two common OpenMP implementations that
rely on pthreads in order to exploit concurrency.

The OpenMP runtimes are commonly composed of two main
parts: thework-sharing constructs and task parallelism. In contrast

Fig. 1. PM offered by the GLT library.

towithwork-sharing constructs,where all theOpenMP implemen-
tations follow a similar policy, distinct OpenMP implementations
leverage differentmechanisms for taskmanagement. In particular,
while the GNU version implements a single task queue shared by
all the threads, the Intel implementation incorporates one task
queue for each thread and integrates workstealing for load balance
control. In both solutions, the task management is separated from
the work-sharing implementations because task directives were
added in the OpenMP 3.0 specification.

2.2. OmpSs

OmpSs [20], developed at BSC, aims to provide an efficient pro-
grammingmodel for heterogeneous andmulticore architectures. It
embraces a task-oriented execution model similar to the OpenMP
tasking features.

OmpSs detects data dependencies between tasks at execution
time, with the help of directionality clauses embedded in the code,
and leverages this information to generate a task graph during
the execution. This graph is then employed by the runtime to
exploit the implicit task-parallelism, via a dynamic out-of-order,
dependency-aware schedule. This mechanism provides a means
to enforce the task execution order without the need for explicit
synchronization. This PM is task-oriented and, therefore, it does
not support work-sharing constructs.

2.3. Generic lightweight threads

GLT is a commonAPI thatwas designedwith the aimof unifying,
under the same PM, a variety of LWT libraries. It is currently de-
fined and implemented for three general-purpose LWT solutions:
MassiveThreads, Qthreads, and Argobots.

Fig. 1 illustrates the PM offered by this API. Specifically,
GLT_thread refers to the OS thread itself, while GLT_ult rep-
resents the user-level threads (ULTs). In addition, GLT_tasklet,
a lighter work unit that does not own a stack (preventing migra-
tion or yield operations), is offered as part of the common API.
While tasklets are natively supported by Argobots only, these are
implemented on top of ULTs for Qthreads and MassiveThreads.
GLT_scheduler acts differently depending on the underlying
library and it may affect the performance of the PM but not the
final result of the execution.

In principle adding an extra software layer between the user
application and the underlying libraries may impact performance;
however, GLT does not add any significant overhead because it
offers a header-only version that allows the compilers to avoid
the extra calls by embedding the LWT code by means of static
inline declarations [21].

Despite some LWT solutions offer an API of more than 300
functions, GLT offers just 52 functions grouped in 7 modules:



https://isiarticles.com/article/86223

