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Abstract: Optimization of failure-prone manufacturing systems with uncertainty in demand
and inventory levels are considered. Conventional approach to production optimization of
manufacturing systems requires precise knowledge of demand and inventory. In case of unknown
demand and imprecise inventory the online estimation is needed in order to implement optimal
policies. We propose in this work a novel methodology for monitoring and online assessment
of demand and inventory levels based on the state estimators in the case of precisely known
inventory and on Kalman filtering in the case of uncertainty in inventory information. The
proposed approach allows to continuously monitor the uncertain states of the system and
provides converging estimates of demand and inventory levels (when they are not precisely
measured). The cases of constant, slow-varying and randomly-varying demand are considered.
Obtained estimates are shown not to be affected by the discontinuous changes in production
capacity, that are due to random failure-repair processes. The proposed methodology is described
in detail for the case one-machine-one-product system and the possible extensions to the case of
hybrid manufacturing-remanufacturing systems with uncertain demand and return are outlined.
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1. INTRODUCTION

Manufacturing systems are usually functioning in the
environments with several uncertainties. Optimizing the
system behavior while accounting for these uncertain-
ties is practically important but theoretically challenging.
Generic approaches to the analysis of the systems with
only partially observed inventory characteristics are dis-
cussed in Kang and Gershwin (2005) and Sethi and Shi
(2013). The reasons for which the observed inventory level
may differ from the actual one are numerous: spoilage,
theft or misplacement of the products, transaction errors
or information delay, etc. In Kang and Gershwin (2005)
the sensitivity of the system performance to the inventory
record errors are studied with particular attention to the
systems operating under (Q,R)-policy. In Sethi and Shi
(2013) various methods for compensating the uncertainty
impact were discussed. Existing approaches to incomplete
information about inventory were reviewed and new so-
lution methods were proposed mainly in the framework
of inventory management. A practically important class
of the systems with partially observed inventory (so called
7 zero balance walk” - model) is investigated in Bensoussan
et al (2007), where the rigorous analysis of optimality con-
ditions (Bellman equations) is performed and a feedback
control policy is described.

Additionally to having the incomplete information about
inventory levels, manufacturing systems are often func-
tioning under uncertain demands. A usual assumption that

the demand is a known constant is a convenient but barely
justifiable simplification. In practice, the demand has to
be forecasted and inevitable forecasting errors propagate
through the system and affect all subsequent managerial
decisions. The issues related to demand forecasting have
recently gained a substantial interest of scientific com-
munity. In Tratar (2015) various forecasting methods are
compared in order assess their suitability for the case
of noisy demand. The influence of demand forecasting
errors on production and maintenance optimization and
on inventory control is investigated in Hajej et al (2014)
and in DoRego and deMosquita (2015(@) respectively. The
deep impact of demand forecasting on the safety stock level
that has been often neglected in the literature is discussed
in Prak et al (2017).

For the systems that use remanufacturing in their produc-
tion process the effect of uncertainty in the demand and
(especially) in the return level is more pronounced (Govin-
dan et al (2015)), and currently attracts the increasing
interest of the researchers. In particular, in Zang and Hu
(2014) authors describe the decisions about the acquisition
price and production rates that the company has to set
while facing uncertainty in the demand and return levels.

2. PROBLEM FORMULATION AND SYSTEMS
UNDER STUDY

In order to demonstrate our proposed approach we con-
sider the simplest possible model manufacturing system,

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2017.08.1887



Viadimir Polotski et al. / IFAC PapersOnLine 50-1 (2017) 15598—15603

namely a one-machine-one-product system described in
Akela and Kumar (1986), where analytical solution for
production optimization problem was given.

2.1 Problem statement

The machine is subject to (random) failures followed by
(random) repairs. The times between successive failures
and the repair times are exponentially distributed with
rates p and r respectively. We denote by £ the binary
variable corresponding to the random state of the machine
(¢ = 1 when the machine is up and £ = 0, when it is down).
Transitions between the state are conventionally described
by the state transition matrix

G=tur= (") 0

Let us denote by z the serviceable inventory, by z its
measured value, by d - the demand rate, by w and U -
the production and maximal production rates respectively.
The evolution of the system can be described as follows

T=u—d
d=0 (2)
z=x+v

Additionally to conventionally used first equation we have
added to the model the equations that describes the de-
mand behavior (second line) and inventory measurement
(third line).

2.2 Proposed methodology

In contrast to the standard assumptions that the instanta-
neous demand and inventory levels are precisely known we
suppose that one of them or both are uncertain. Namely,
we consider the cases of (a) perfectly known inventory level
and (b) inventory level being subject to uncertainty. In
case (a) we further distinguish the sub-cases of (a.1) con-
stant and (a.2) variable demand. In case (b) we consider
inventory measurements corrupted by the white additive
noise, and suppose the demand being a sum of a constant
and a first order Markov process.

For the case of perfectly measured inventory and unknown
demand (constant or varying), we propose an estimation
procedure based on the use of state observers. For the case
of varying demand we suppose that the model describing
the demand evolutions is available. We construct the
demand estimate that converges asymptotically to the
exact (unknown) demand and this estimate can be used
(instead of the unknown demand) for computing optimal
policy .

For the case of the errors in the inventory measurement
channel we propose the estimation procedure that uses
Kalman filter. We consider in this case the demand dy-
namics as being random as well. Manufacturing systems
with random demand were considered previously (see e.g
Ouaret et al (2013) and references therein), however the
guaranteed solution was mostly under study, while we
explore the possibility of designing an adaptive strategy
based on the constructed estimates.
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Our approach is inspired by the so-called separation prin-
ciple from the feedback control theory. We first compute
the estimates of the demand and inventory levels using the
Kalman-filter-based technique, then replace the unknown
inventory and demand levels by the obtained estimates and
use them in the Hamilton-Jacobi-Bellman (HJB) equa-
tions to obtain the (sub)optimal production control policy.
Preliminary results in that direction were presented at the
11-th International Conference on Modeling Optimizag-
tion and simulation (MOSIM’16).

3. DEMAND ESTIMATION FROM THE KNOWN
INVENTORY DYNAMICS

We suppose that the inventory level can be directly mea-
sured, and the production capacity (at each moment of
time) is precisely known. That means that when the ma-
chine switches to failure mode (and therefore its capacity
falls to zero level) - it becomes immediately known. A
dynamical system, called state observer is constructed,
that takes as inputs the current production level, the
measured inventory level, and its output is the estimated
demand level. The estimates provided by the sate observer
are known to converge under some conditions to the actual
(unknown, variable) demand level.

3.1 Constant demand

Let us consider the system model (2) with constant de-
mand and precise inventory measurements. We therefore

have:
y = (1) (3)

To define the observer dynamics, we first define the ob-
server gains that allow to place the observer poles into the
desired location. For our case we chose the double pole
located at the point Ay = Ay = —2 on the complex plane.
To do that we set the degree of stability p ( 4 = 2 is chosen
in our case), and then proceed with defining the gains as

follows: 9
g1 = —24; ga = (4)

This definition leads to a second order observer:

=u—d+g(F-vy)

- 5

d = g2(T —y) ®)
Corresponding error dynamics is of second order, thus the
demand estimation error converges exponentially with the
rate 2 (bounded by exp —2t). The described procedure
works well for a constant demand and provides the esti-
mate converging exponentially fast to the actual unknown
demand.

The behavior of constructed estimates as well as corre-
sponding inventory dynamics are illustrated in figure 2.
It is important to emphasize that the discrete stochastic
jumps in the production u(t) due to failure-repair random
perturbations do not affect the estimation process. That
is because the production (even affected by the failures)
is known, and as it is being integrated into the estimation
procedure, the resulting error dynamics is invariant to such
perturbations.

In a particular case illustrated in figure 2 the follow-
ing system parameters are used: MTTF = 0.1 (p =
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