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h i g h l i g h t s

• Current-flow efficiency metric considers multipath effect of many real networks.
• Current-flow efficiency metric can handle the disconnected network.
• Analyze how the network topological structure affects the current-flow efficiency.
• Use this metric in measuring network efficiency and finding vital nodes or edges.
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a b s t r a c t

Many real-world networks, from infrastructure networks to social and communication
networks, can be formulated as flow networks. How to realistically measure the trans-
port efficiency of these networks is of fundamental importance. The shortest-path-based
efficiency measurement has limitations, as it assumes that flow travels only along those
shortest paths. Here, we propose a new metric named current-flow efficiency, in which
we calculate the average reciprocal effective resistance between all pairs of nodes in the
network. This metric takes the multipath effect into consideration and is more suitable for
measuring the efficiency of many real-world flow equilibrium networks. Moreover, this
metric can handle a disconnected graph and can thus be used to identify critical nodes
and edges from the efficiency-loss perspective. We further analyze how the topological
structure affects the current-flow efficiency of networks based on some model and real-
world networks. Our results enable a better understanding of flow networks and shed light
on the design and improvement of such networks with higher transport efficiency.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Many complex networks exist in the form of flow networks [1]. For instance, people or goods flow through transportation
networks, electric current flows through electrical transmission networks, information flows through communication
networks, epidemics and opinions flow through social networks. Assessing how cost-efficient flow is exchanged over such
networks is of fundamental importance in network analysis. A well-known metric for this purpose is the shortest-path
efficiency [2], defined as the average inverse shortest-path length under the assumption that flows move along the shortest
possible path across the network. This measurement can be calculated for both connected and disconnected networks
and has been applied in many different fields [3–5], especially in assessing efficiency degradation when a network is
damaged [6,7]. However, for many networks, flow does not follow only the shortest path — for example, rumors propagate
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alongmany possible paths established based on personal relationships among individuals in a social network [8], traffic flow
between the same origin–destination pair is distributed along multiple routes in a road network [9], and electric current or
fluid flows in a power grid or pipeline network according to the specific physical law. For such networks with multipath
transport behavior, the shortest-path efficiency cannot fully reflect the efficiency of the system.

To rationally measure the multipath efficiency of general flow networks, several alternative graph metrics that take into
account the multipath transport effect have been proposed [10–16]. One such metric is network communicability [10,11],
which quantifies the amount of information that can flow from one node to another in a network. The communicability
between two nodes in a network is the weighted sum of all possible paths starting from one node to another, in which the
longer paths are assigned smaller weights. Based on the concept of network communicability, the average communicability
distance [12] and communicability angle [13] have been proposed to measure the communication efficiency of networks.
These metrics are of great interest as contributions from all possible paths are considered; however, network efficiency is
evaluated from the perspective of maximum flow, while the time or effort required to transport these flows is neglected.

Another interesting metric for network efficiency is the effective graph resistance [15,16], which is defined as the
accumulated effective resistance between all pairs of nodes in a network. Many dynamical processes in highly different
systems, including randomwalks in a social network [8], congested traffic flow in a road network [9,17], viscous flow in a pipe
network [18] and force equilibrium in a mechanical network [19], are mathematically equivalent to Kirchhoff’s equilibrium
equation for an electrical circuit [19,20]; thus, the effective graph resistance is suitable tomeasure the efficiency of these flow
equilibrium networks. However, this metric cannot be applied to a disconnected network because the effective resistance
of a disconnected graph is always infinite [15]. This shortcoming causes the effective graph resistance to be unsuitable for
assessing the efficiency loss caused by the removal of nodes or edges, leading to separation of the original network into
disconnected clusters.

In this paper, we propose a newmetric named current-flow efficiency, which is defined as the average reciprocal effective
resistance between all pairs of nodes in a network. This metric takes the multipath effect into consideration, which allows
for amore realisticmeasure of efficiency formany real-world flow networks. More importantly, it can handle a disconnected
graph, in which the conductance between two disconnected nodes is zero and the graph’s current-flow efficiency is between
zero and one. This metric can be used to identify critical nodes and edges from the efficiency-loss perspective.

2. Definition of current-flow efficiency

We view an undirected weighted graph as an electrical network with only pure resistors and ideal voltage sources, in
which each node i ∈ {1, 2, . . . ,N} is possibly connected to a voltage source and each edge is a resistor with resistance rij (in
this paper we just consider unweighted graph and set rij = 1 for all edges). The application of Ohm’s law to each edge (i, j)
yields the current flowing from i to j

Iij =
vi − vj

rij
= aij(vi − vj), (1)

where vi is the voltage at node i, aij is the conductance (inverse resistance) and aij = 0 if two nodes are not connected by a
resistor. Let one unit of current be injected into the network at a source node s and extracted at a target node t . Kirchhoff’s
current law states that the total current flow into or out of any node is zero, which implies that the voltages satisfy the nodal
equilibrium equation [8,16]∑

j

aij(vi − vj) =

{
+1; for i = s,
−1; for i = t,
0; otherwise,

(2)

or the matrix form

(D − A)V = I, (3)

where D is the diagonal matrix with elements Dii =
∑

jaij and the vector I has elements

Ii =

{
+1; for i = s,
−1; for i = t,
0; otherwise.

(4)

Notice that L = D − A is the graph Laplacian matrix. If L+ is the Moore–Penrose pseudoinverse of L, then the solution of
Eq. (3) is

V = L+I. (5)

The effective resistance [15,16] (also called resistance distance) Rij between i and j is the potential difference of nodes i
and j when a unit of current is injected at the source i and removed at the target j:

Rij = vi − vj = (L+

ii − L+

ij ) − (L+

ji − L+

jj ) = L+

ii + L+

jj − 2L+

ij . (6)
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