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a b s t r a c t

In this paper we prove that, among all one-point iterative processes without
memory of order p, the most efficient processes are of order p = 3. Moreover, the
computational efficiency of one-point iterative processes without memory decreases
to 1 as p increases, i.e., the efficiency index of higher order of convergence methods
is low. We find the upper and lower bounds of the Ostrowski–Traub index of
computational efficiency in a wider class of iterative methods with unit informational
efficiency.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let α be a simple real root of a single non-linear equation of the form

f(x) = 0, (1)

and x0 be an initial approximation to α.
For solving (1) we apply a one-point iterative method without memory

xn = F (xn−1), n = 1, 2, . . . (2)

where F (α) = α.
Recall that, according to the classification of Traub [1], a one-point iterative method without memory

is determined, at each step n, only by the new information at xn−1, and we do not need to remember any
evaluations from previous steps. Many classical methods, such as
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Newton’s method, of order 2:

xn = xn−1 − f(xn−1)
f ′(xn−1) , n = 1, 2, . . . , (3)

Chebyshev’s method, of order 3:

xn = xn−1 − f(xn−1)
f ′(xn−1) ·

(
1 + f(xn−1)f ′′(xn−1)

2(f ′(xn−1))2

)
, (4)

and
Halley’s method [2], of order 3:

xn = xn−1 − f(xn−1)
f ′(xn−1) · 1

1 − f(xn−1)f ′′(xn−1)
2(f ′(xn−1))2

, (5)

belong to this category.
In this paper we obtain bounds for the efficiency index of the iterative methods of a certain class and

identify the optimal order among these methods.
The paper is organized as follows: Section 2 contains the notations, definitions and some previous results,

pertaining to this paper. Section 3 provides our main results, where we obtain the tight bounds for the
efficiency index of one-point methods without memory and prove that the index is maximal for processes of
order 3. Section 4 contains brief conclusions.

2. Definitions and notations

2.1. Order of convergence

Let en = xn − α be the error at the nth stage of a convergent iterative process. If

|en+1| = c|en|k + o(|en|k), (6)

where c and k are some positive constants, then the iterative process converges with order p = k, and the
number c is called the asymptotic error constant. In 1870, Schröder [3] defined the order of convergence as
follows: an iterative function F is of order p if

F (α) = α, F (i)(α) = 0, 1 ≤ i ≤ p − 1, F (p)(α) ̸= 0.

Clearly, this definition is valid only for integer values of order p and for iterative functions with p continuous
derivatives.

Wall [4] defined the order of the process in a more general way, namely by

p = lim
n→∞

pn+1

pn
, (7)

where pn = − log |en|, if the limit of the right-hand side exists. Note that Definition (7) generalizes (6).
Indeed, if the process converges with order k (i.e., (6) takes place) then, for sufficiently large n,

pn+1 ≈ − log c + kpn,

or, equivalently,

pn+1

pn
≈ − log c

pn
+ k.
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