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A B S T R A C T

In this study, an interval chance-constrained bi-level programming (ICBP) method is developed for air quality
management of municipal energy system under uncertainty. ICBP can deal with uncertainties presented as in-
terval values and probability distributions as well as examine the risk of violating constraints. Besides, a leader-
follower decision strategy is incorporated into the optimization process where two decision makers with dif-
ferent goals and preferences are involved. To solve the proposed model, a bi-level interactive algorithm based on
satisfactory degree is introduced into the decision-making processes. Then, an ICBP based energy and en-
vironmental systems (ICBP-EES) model is formulated for Beijing, in which air quality index (AQI) is used for
evaluating the integrated air quality of multiple pollutants. Result analysis can help different stakeholders adjust
their tolerances to achieve the overall satisfaction of EES planning for the study city. Results reveal that natural
gas is the main source for electricity-generation and heating that could lead to a potentially increment of im-
ported energy for Beijing in future. Results also disclose that PM10 is the major contributor to AQI. These findings
can help decision makers to identify desired alternatives for EES planning and provide useful information for
regional air quality management under uncertainty.

1. Introduction

It is inevitable that, to maintain a comfortable and civilized society,
energy is essential for industry, transportation and electricity genera-
tion. However, massive consumption of energy sources causes an in-
creasing concentration of atmospheric pollutants (e.g., nitrogen oxides
(NOx), particulate matter (PM) and sulfur dioxide (SO2)) that have been
an immense burden for human health and economy development [1,2].
According to the report, air pollution was responsible for 1.6 million
deaths in China and 4.2 million deaths throughout the world in 2015
[3,4]. Currently, around 80% of global energy is generated by fossil
fuels that have severe impact on the atmospheric environment [5]. Air
pollution has been a major environmental concern, because it is related
to a variety of human activities and economic implications and, at the
same time, it poses serious threats on public health. Particularly for
many developing countries and/or regions, they have to produce more
energy to meet economy development, such that they are facing double
challenge in sustainable development in future: the absence of secure
and adequate energy sources at accessible prices and environmental
damages caused by excessive energy demand [6]. In response to the

above issues, there is an urgent need for a comprehensive and robust
technique to optimize regional energy system to maintain the local air
quality at a safe level.

Previously, many research works were conducted to manage energy
and environmental systems (EES) through mathematical models
[7–12]. For the conventional deterministic approaches, since there is a
gap between the recognition of uncertainties and its actual incorpora-
tion within modeling formulation, they cannot contemplate the dif-
ferent sources of uncertainty in an integrated manner [13]. In the real
world, EES is a combination of different components with multilayer
energy and information flows, in which multiple formats of un-
certainties are involved in the related factors and/or parameters,
causing a variety of complexities in the relevant decision-making pro-
cesses [14]. On the other hand, with the increasing of energy demands,
rising concerns over energy security and environmental issue could
force decision makers to contemplate comprehensive plans in EES.
However, most previous studies mainly focused on a single-decision
problem that ignore the hierarchical structure of system and simplify
the real-world practical problems.

Bi-level programming (BP) is effective for dealing with the above
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decision making problems, where each decision maker at two hier-
archical levels independently controls a set of decision variables, and
their decisions are affected by each other [15,16]. Recently, numerous
researchers attempted to use the BP method for planning energy system
[17–21]. Although BP can address the tradeoffs between different de-
cision makers in two decision-making levels, it has difficulties in
handling uncertainties associated with the economic coefficients and
technical factors. For decision makers, uncertain parameters (e.g.,
random energy supply) as well as the risk of violating constraints need
both to be measured. One possible approach to address multiple un-
certainties is interval chance-constrained programming (ICCP) that
couples interval linear programming (ILP) with chance-constrained
programming (CCP) [22].

Therefore, this study aims to develop an interval chance-constrained
bi-level programming (ICBP) method for planning energy and en-
vironmental systems (EES) in association with multiple uncertainties
and multiple decision makers. ICBP will integrate interval chance-
constrained programming (ICCP) and bi-level programming (BP) in a
general framework. Then, an ICBP-EES model will be built for planning
Beijing’s energy system, where air quality index (AQI) will be employed
to assess the city’s integrated air-quality condition under multiple de-
cision makers with different objectives. Interval solutions associated
with different risk levels of constraint violation can provide direct
support for the city’s EES planning and the local air quality manage-
ment under uncertainty.

The major contribution of this study is the development of ICBP
method for EES planning with advantages of uncertainty reflection, risk
analysis, and synthetic decision making. Compared with single-level
programming techniques, as advanced by Li et al. [23] and Sadri et al.
[24], ICBP refers to multiple decision makers with different goals and
preferences, where each decision maker at two hierarchical levels in-
dependently controls a set of decision variables. In comparison with the
conventional multi-objective programming [25,26], the decision
making process of ICBP is in a hierarchical order, in which the goal of
decision maker who is more important need to be preferably met, then
the tradeoffs between decision makers in various decision-making le-
vels can be addressed. Besides, the conventional deterministic frame-
works of EES planning could hardly address various responses of en-
ergy-related activities, and these responses are simply linked to some
parameters instead of integrating into modeling formulation [7–9].
ICBP cannot only deal with uncertainties expressed as interval values
and probability distributions, but also reflect the risk of constraint
violation. Summarily, three characteristics of ICBP make it superior in
comparison to the existing optimization techniques: (i) it can handle
uncertainties expressed as probability distributions, interval values, and
their combinations, (ii) it can be used for quantitatively analyzing the
tradeoffs among multiple decision makers owning different preferences
and goals, and (iii) it can provide the information about the risk of
constraint violation in the step of solution process.

2. Interval chance-constrained bi-level programming

The general formulation for a bi-level programming (BP) problem is
[27]:
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x

1 2
1 (1a)

where x2 solves:

Min f x x( , )
x

1 2
2 (1b)

subject to:

= ≤ = ≥G x x g x x i m x x{( , ) ( , ) 0, 1, 2, ..., , , 0}i1 2 1 2 1 2 (1c)

where ∈x Rn
1

1and ∈x Rn
2

2. The variables are divided into two classes:
upper-level ( ∈x Rn

1
1) and lower-level ( ∈x Rn

2
2) variables;

the × →F R R R: n n1 2 , × →f R R R: n n1 2 are upper-level and lower-level

objective functions, respectively; G is the bi-level constraint sets. In BP
problem, upper-level decision maker (ULDM) and lower-level decision
maker (LLDM) accept the leader-follower Stackelberg game [28].

Although the BP can effectively handle tradeoffs between decision
makers in different decision-making levels, it has limitation in re-
flecting uncertainties existing in economic coefficients and technical
factors. For decision makers, uncertain parameters (e.g., random energy
supply) as well as the risk of violating constraints need both to be
measured. In order to solve the above problems, an interval chance-
constrained programming (ICCP) model can be formulated as follows:
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sion variables that can be sorted into two categories: continuous and
binary. Through coupling ICCP with BP, an interval chance-constrained
bi-level programming (ICBP) model can be formulated as:
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An interactive solution algorithm is proposed for solving model (3)
through analyzing the interrelationship between parameters and vari-
ables as well as between objective functions and constraints [15]. Since
objective functions of ULDM and LLDM are to be minimized, the sub-
model corresponding to the lower-bound objective-function value can
be first formulated:
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For the lower-bound submodel (4), the ULDM problem can be first
solved, and the solution of Eqs. (4a) and (4c) is assumed to
be − − −x x f( , , )U U U

1 1 1 ; then, the LLDM can be solved independently with
the solutions of − − −x x f( , , )L L L

2 2 2 . The range of decision variable −x1 should
be around −x U

1 with the maximum tolerance −p1 . The membership
function that specifies −x1 can be presented as follows:

⎧

⎨

⎪

⎩
⎪

μ x =

,if x − p < x < x

,if x < x < x + p ;

0, , if otherwise.

( )x 1
−

x − x − p
p 1

U−
1
−

1
−

1
U−

x + p − x
p 1

U−
1
−

1
U−

1
−

( )

( )
1
−

1
−

1
U−

1
−

1
−

1
U−

1
−

1
−

1
−

(5)

where −x U
1 is the most preferred decision, +− −x pU

1 1 and −− −x pU
1 1 are

the worst acceptable decision; satisfaction degree increases linearly
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