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a b s t r a c t 

We consider a spare parts stock point that serves an installed base of machines. Each machine contains the same 

critical component, whose degradation behavior is described by a Markov process. We consider condition based 

spare parts supply, and show that an optimal, condition based inventory policy is 20% more efficient on average 

than a standard, state-independent base stock policy. We further propose an efficient and effective heuristic 

policy. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Capital goods, such as lithography equipment used in the semicon- 

ductor industry, CT scanners that are used in hospitals, or radar systems 

on board naval vessels, are expensive, technologically complex systems 

that are used in the primary processes of their users. As a result, their 

uptime is of utmost importance; each minute of unavailability may be 

costly, risky, or both. Spare parts are stocked to prevent downtime: upon 

failure, a defective component can be replaced quickly by a functioning 

spare part. It is therefore important to have enough stock on hand. How- 

ever, spare parts are expensive, which means that stocking too many 

spare parts is costly. Since making this trade-off poses a challenging 

problem, there has been a lot of research on spare parts inventory con- 

trol [see, e.g., 1] . 

The costs of the spare parts inventories may be reduced by using in- 

formation on the condition of the components that are installed in the 

installed base. To this end, we consider a number of machines, each 

containing the same one critical component that degrades over time. 

The degradation evolves according to a Markov chain with a finite state 

space, with at most one state transition per period [see, e.g., [2–4] , for 

an understanding of how to model degradation using a Markov chain, 

including the determination of the transition probabilities]. The condi- 

tion is monitored perfectly at the beginning of each period. Since there 

is at most one transition per period, a component can fail only in a 

certain period if it is in the last degradation state at the beginning of 

that period. (This simplification allows us to focus on the key insights; 

in practice, there may be other failure modes that lead to failure of a 

component that is in perfect condition.) Upon failure, the component 

is replaced immediately by a functioning spare part. One stock point is 
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used to stock these spare parts and the base stock level in each period 

is dependent on the condition of the installed components and on the 

complete inventory status (stock on hand plus exact position of each 

outstanding order). If the stock point has no stock on hand when a de- 

mand arrives, an emergency procedure is used to obtain the part from a 

source with ample supply. For this, emergency costs are paid. The other 

costs that we consider are inventory holding costs. 

We model this problem as a discrete-time Markov decision problem 

(MDP) and we obtain the optimal policy using value iteration [see, e.g., 

5] . This is very time consuming, especially if the number of degrada- 

tion states, the lead time, or the number of machines is high. Therefore, 

we propose three heuristic policies that are easy to compute, and we 

show that the third policy is close to optimal. In an extensive numerical 

experiment, we find that the optimal policy, which by definition is a 

state-dependent base stock policy, achieves average cost savings of 20% 

compared with a state-independent base stock policy. These savings in- 

crease with the precision with which the degradation behavior can be 

tracked. Interestingly, the possible savings decrease if the size of the in- 

stalled base increases. This is probably because in a larger installed base, 

there are virtually always some components that are very new and some 

components that are close to failure. In other words, effects level out. 

Our main contribution is that we study the effect of condition infor- 

mation on spare parts supply without changing the maintenance policy. 

We show that large savings can be obtained, we identify under which 

circumstances the savings are largest, and we derive an efficient and 

effective heuristic policy. Our research is especially relevant for situa- 

tions where preventive replacements are undesired because of the loss 

of a significant part of the useful lifetime of components, or if preventive 

replacements are (almost) equally expensive as corrective replacements 
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(e.g., in process manufacturing, operating 24/7). We are aware of only 

a few papers that are closely related to our work; we explain the differ- 

ences with our work in Section 2 . 

The remainder of this paper is organised as follows. We discuss the 

related literature in Section 2 . In Section 3 , we introduce our model, and 

in Section 4 we discuss the resulting Markov decision process. Next, in 

Section 5 , we discuss the optimal base stock policy, and we discuss the 

heuristic policies that we propose in Section 6 . We then perform an ex- 

tensive numerical experiment in Section 7 . Finally, we draw conclusions 

in Section 8 . 

2. Related literature 

The relevant literature on spare parts inventory control has started 

with the paper by Feeney and Sherbrooke [6] . This has led to a huge 

stream of research on all kinds of spare parts inventory systems. For an 

overview, we refer to the books by Sherbrooke [7] and Muckstadt [8] or 

the review by Basten and Van Houtum [1] . 

In a large part of the literature on spare parts inventory control, one 

assumes backordering of demands that cannot be fulfilled immediately. 

In our model, however, we assume that such demands are fulfilled by 

an emergency source and they can then be seen as lost demands for 

the stock point under consideration. A recent overview of the literature 

on inventory control with lost sales, not necessarily considering spare 

parts, is given by Bijvank and Vis [9] . We discuss three papers in more 

detail, all considering a discrete-time inventory model with lost sales: 

Bijvank and Johansen [10] and Zipkin [11] , [12] . Bijvank and Johansen 

[10] discuss, among other things, a so-called restricted base stock policy. 

This is a regular base stock policy, but with a maximum on the order 

size. The reason to propose this policy is that the authors often find that 

the “PBSP [pure base stock policy] and the optimal policy coincide in 

numerous states of the Markov chain ” [10, p.109] . 

The first heuristic policy that we propose is also a base stock policy 

with a maximum, although we use a different way of deriving this max- 

imum (see Section 6.2 ). Zipkin [11] discusses various heuristic policies, 

one of which is the myopic policy [based on 13] . Our second heuristic 

policy is also a myopic policy, but it is different since we have to make 

some approximations to cope with our complex demand process (see 

Section 6.3 ). 

In both papers, Zipkin assumes that demands in consecutive peri- 

ods are independent. However, in [12] he mentions an extension to 

Markov-modulated demands, resulting in a state-dependent inventory 

policy. He explains that the state space of possible supply orders is 

bounded. In our paper, the demand process follows a specific Markov- 

chain-driven counting process (with demands connected to transitions) 

whose structure is explicitly exploited in the analysis and the derivation 

of the heuristic policies. 

There is also literature on varying demand rates and state-dependent 

inventory policies in models with backlogging. For example, Song and 

Zipkin [14] consider a single stock point that faces demand that follows 

a Markov-modulated Poisson process. Considering continuous review, 

holding costs for inventory on hand and penalty costs for backorders, 

the authors show that the optimal policy is a base stock policy. Although 

the demand process at each point in time is dependent on an underlying 

Markov chain, there is no direct link with the state of the components 

in the installed base. 

Another stream of research on state-dependent inventory policies 

uses advance demand information (ADI). In most of the literature, ADI 

means that customers place orders that will lead to an actual demand 

only after a certain demand lead time. The seminal paper in this stream 

of research is the paper of Hariharan and Zipkin [15] . The authors con- 

sider both a single location system and a serial system. In both cases 

they assume a continuous review, base stock policy with full backo- 

rdering. Replenishment orders are triggered by the customers ’ orders, 

which result in actual demands after a certain demand lead time, thus 

making perfect ADI. ADI may also be imperfect. For example, Topan 

et al. [16] consider three types of imperfectness: The demand lead time 

may be stochastic, a demand that is preceded by ADI may not material- 

ize, and a demand may materialize that is not preceded by ADI. Topan 

et al. assume a single stock point with periodic review and lost sales if 

a demand cannot be fulfilled from stock. They give the setting of spare 

parts inventory control and condition monitoring as one example where 

their model applies. 

A key difference with the work of Topan et al. [16] is that in our 

model, we explicitly model the degradation behavior of the critical com- 

ponents and we derive the imperfect ADI from that behavior. A related 

paper is that of Deshpande et al. [17] . The authors assume that a part- 

age signal can be observed each period, which is then compared with 

a certain threshold value. Depending on the number of parts that have 

a signal above the threshold value, the authors calculate a conditional 

mean and variance of a normally distributed lead time demand. These 

are used to set the base stock level, assuming holding costs per unit on 

hand and backorder costs per backorder. 

Finally, as mentioned in the introduction ( Section 1 ), our paper is re- 

lated to the stream of literature on condition based maintenance (CBM). 

In particular, the delay time model is of interest, as introduced by Chris- 

ter [18] . In this model, if a component becomes defective (which is not 

self-announcing) there is a certain delay time after which the component 

actually fails. This makes it whorthwhile to perform inspections to ob- 

serve the condition of the component. For an overview of the literature 

on CBM, including a review of diagnostics and prognostics techniques, 

see Jardine et al. [19] . Two more recent overviews of the literature on 

CBM are those by Alaswad and Xiang [20] and Olde Keizer et al. [21] . 

Within the stream of literature on CBM, also the reducing effect of CBM 

on spare parts supply costs has been studied; see, for example, Bjarna- 

son et al. [22] , Elwany and Gebraeel [23] , Van Horenbeek and Pintelon 

[24] , Rausch and Liao [25] , Wang et al. [26] , Wang et al. [27] , Wang 

[28] , Wang et al. [29] or Wang et al. [30] . Van Horenbeek et al. [31] re- 

view the literature on joint optimization of spare parts inventory control 

and maintenance (not necessarily CBM). 

As already stated, we distinguish ourselves from the latter studies 

by considering the effect of conditioning monitoring on spare parts sup- 

ply without changing the maintenance policy. We are aware of two pa- 

pers with the same focus. The first paper is that of Louit et al. [32] , 

who assume a single system for which at most one spare part is kept on 

stock. The authors further assume backordering when a spare part is de- 

manded but not available. In contrast, we consider an arbitrary number 

of systems, allow any spare parts inventory level, and assume that an 

emergency shipment is executed in an out-of-stock situation. This also 

implies that we have a different cost structure. The second paper is that 

of Li and Ryan [33] . They model deterioration of each part as a Wiener 

process and use that to estimate the distribution of the remaining useful 

life of each part. This estimate is updated each period using Bayesian 

updating and it is used to estimate the distribution of the demand for 

spare parts in the upcoming periods. This type of modelling of degrada- 

tion is a key difference with our work. Another difference is that Li and 

Ryan [33] assume a zero replenishment lead time. 

3. Model description 

We consider a group of N ( ∈ ℕ ) identical machines, each containing 

one critical component. The component is subject to a degradation pro- 

cess on a finite state space  ′ = {0 , … , 𝐼} , with state 0 representing the 

perfect working condition and state I representing failure. In practice, 

the states may have meaningful interpretations, such as ‘Good ’, ‘Minor 

defects only ’, ‘Maintenance required ’, and ‘Down ’. Alternatively, they 

may correspond to consecutive intervals of a continuous degradation 

parameter [see also 2 , 3 , 4] . Time is divided into periods of unit length 

and we assume an infinite horizon. We assume that the length of a pe- 

riod is short compared to the average lifetime of the critical component 

(e.g., the period length may be one week, while the lifetime of the crit- 

ical component is in the range of 1 to 10 years). It is then reasonable 
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