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A B S T R A C T

Previous studies on production planning indicated that keeping updated information on estimates of demand,
estimates of production capacity, estimates of available resources, etc., during the planning horizon, is
particularly important to maintain the current production planning. Hence, the planner has to change the
production planning from time to time to accommodate these updating, and therefore, there is a huge waste of
resource planning, since the production planning is carried out for the entire planning horizon, but only run for
a few periods, or just one period. Another drawback of the existing arrangements to implement a rule of rolling-
planning with the production planning is that they do not work well under capacity constraints and thus all the
rolling-planning models that result from linear programming models coupled with clearing function are clearly
outside the scope of these current schemes, since all of them incorporate capacity constraints. This paper comes
providing a new scheme (Algorithm) to solve the pointed drawbacks, analyzes the scheme, prove a theorem
which guarantees the result provided by the algorithm is correct, and finally illustrates the result using a
numerical example.

1. The problem

Linear programming models are widely used to address production
planning problems, which have been studied for several decades (Kefeli
et al., 2011; Karmarkar, 1989; Graves, 1986; Chu, 1991; Asmundsson
et al., 2009; Kempf et al., 2011; Srinivassan et al., 1988; Hopp and
Spearman, 2001; Kacar and Uzsoy, 2014), although their recommen-
dations are inconsistent with the queuing behavior observed in most
production facilities (Kefeli et al., 2011; de Sampaio et al., 2009, 2011).
The vast majority of insights show that the performance of productive
systems is affected by the loading of the system well before capacity is
fully utilized, and average lead-time increases nonlinearly with capacity
utilization (Karmarkar, 1989; Graves, 1986; Hopp and Spearman,
2001), i.e., with the workload of system. Hence, the workload of the
system determines lead-time, impacting the feasibility of production
plans. This creates difficulties for linear programming formulations of
production planning problems that assume constant lead-time. These
models, assuming constant lead-time, determines the levels of resource
utilization in the system, which in turn, may result in realized lead-
times that are different from those initially assumed. This circularity
has been approached by several iterative schemes (Asmundsson et al.,
2009), nevertheless, to the best of our knowledge, their convergence is
not yet understood (Fatih et al., 2010). In this paper we address this
circularity through the use of clearing functions, first introduced by
Graves (1986), Karmarkar (1989), and Srinivassan et al. (1988), and

more recently by Asmundsson et al. (2009), Kefeli et al. (2011), Fatih
et al., (2010), and de Sampaio et al. (2009, 2011, 2012, 2013a, 2013b),
etc. For a detailed review of the state-of-art in production planning
using clearing function, see Missbauer and Uzsoy (2010).

It is assumed that clearing function is a two variable indefinite
function that expresses the expected production throughput of a
capacitated resource over a planning period as a function of the
average work-in-process level over that period and the throughput
time in the system, thus giving realistic information on the capacity of
the resources. Introduction of clearing function into a linear program-
ming production planning model destroys its linear structure, which we
usually want to preserve, however, the convex structure of the resulting
nonlinear model allows it to be easily approximated to any degree of
accuracy by a large linear programming model (Kefeli et al., 2011),
which may require decomposition techniques to solve (de Sampaio
et al., 2011, 2012, 2014; Wollmann, 2012). The classical schemes used
to decompose this resulting problem (Chu, 1991; de Sampaio et al.,
2009), does not work properly in the presence of nominal capacity
constraints, and since clearing functions are a form of capacity
constraint, the classical decomposition scheme does not work properly
in this context either, as seen in (de Sampaio et al., 2011). Hence, a new
decomposition approach is required to decompose the planning
horizon (de Sampaio et al., 2014). Nevertheless, a new decomposition
would be of limited value if it does not allow rolling-planning
programming, which is the issue we address here.
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The implementation of production planning using rolling-planning
approach is common practice in a dynamic environment (Chand et al.,
2002; Naphade et al., 2001) and is extensively studied and applied in
both academia and industry. Concerning production planning, rolling-
planning problems can be found in many different areas, such as,
Material Requirement Planning (Blackburn and Millen, 1982;
Simpson, 1999), aggregate planning (Chung and Krajewski, 1987;
Nedaei and Mahlooji, 2014), lot sizing (Stadtler, 2000; Tiacci and
Saetta, 2012; Bardhan et al., 2012), production planning and schedul-
ing integration (Li and Ierapetritou, 2010; Bredström et al., 2013),
Master Production Scheduling (Campbell, 1992; As’ad and Demirli,
2010; Vargas and Metters, 2011) and hierarchical production planning
(Mehra et al., 1996; Wu and Ierapetritou, 2007) just to quote a few.
These problems can be solved using many different techniques, such as,
Linear Programming (Albey et al., 2015; Galasso et al., 2008), Dynamic
Programming (Bitran and Leong, 1992; Sung and Lee, 1994),
Simulation (Nedaei and Mahlooji, 2014; Vargas and Metters, 2011),
Mixed and Integer Programming (Erdirik-Dogan and Grossmann,
2007; Herrera et al., 2015) and Heuristics (Mercé and Fontan, 2003;
Toy and Berk, 2013) to cite a few.

Considering a multi-period problem, the planning horizon is
divided into T time periods (for example 12 periods) and the produc-
tion planning model is solved. Once the model is solved, decisions for
the current period (Tiacci and Saetta, 2012) or for the next few periods
(Vargas and Metters, 2011) are implemented. Towards the end of the
period, information are updated and a new model is solved which now
covers the planning horizon for the next T periods (12 months) or the
remaining months of the year T-1, T-2 and so on. The latter situation
would be the case of, for example, in annual budget planning
(Bredström et al., 2013). At the beginning of any period, a set of
decisions are made considering new information and future estima-
tions available, usually, under the supervision of a decision support
system based on the mathematical programming model.

Rolling-planning is considered more efficient than the methodology
that restricts implementation to the immediate period for which
demand information is least subject to error (As’ad and Demirli,
2010). In general, in industrial engineering works, rolling-planning
in production planning is extensively studied for the case where the
planning horizon has its size of T at each iteration (Blackburn and
Millen, 1982; Simpson, 1999; Chung and Krajewski, 1987; Nedaei and
Mahlooji, 2014; Stadtler, 2000; Tiacci and Saetta, 2012; Bardhan et al.,
2012; Campbell, 1992; As’ad and Demirli, 2010; Vargas and Metters,
2011; Mehra et al., 1996; Albey et al., 2015; Galasso et al., 2008; Bitran
and Leong, 1992; Sung and Lee, 1994; Herrera et al., 2015; Mercé and
Fontan, 2003; Toy and Berk, 2013). The case where T is fixed and the
planning horizon gets shorter and shorter at each iteration (Li and
Ierapetritou, 2010; Wu and Ierapetritou, 2007; Erdirik-Dogan and
Grossmann, 2007) is not well explored yet. In this last case chemical
engineering works deal with problems in a continuous production
environment where the last batch finishes at a certain period, but this
way of modelling can be expanded and used in other applications, in
order to cover not only the chemical engineering field but also
industrial engineering as a whole, as for instance in the case of public
service concessions.

The rolling-planning scheme provided here uses linear program-
ming model whose information about capacity comes from an exter-
nally estimated clearing function. Explicitly the rolling-planning
scheme is the following: The planning horizon is fixed as a fix number
of periods ahead; the first production planning is formulated covering
all the periods of the planning horizon; only the decisions to the first
period are executed; repeat the procedure until the set of periods is
void. Therefore, each production planning is one period shorter than
the previous, until it finishes, and in this sense the presented scheme is
a decomposition process.

The remainder of this paper is organized as follows. In Section 2,
the structure of the problem is presented, an algorithm is defined, and

a theorem on the algorithm is presented and proved. In Section 3, a
numerical illustration is presented to show why the existing scheme of
decomposition (de Sampaio et al., 2014) fails, as well as the way the
new rolling-planning scheme overcomes the failure, and finally the
conclusions are presented.

2. Structure of the problem

Motivated by the schemes proposed by Chu (1991), de Sampaio
et al. (2009, 2011, 2012), and Wollmann (2012), which describe
cumulatively the resources whose leftovers can be transferred from
one period to the next, and period to period, the resources whose
leftovers cannot, we consider the following production planning
problem: Lets xij be the production level of product i in period j, and
cij the unit cost to produce one unit of product i in period j. Let bki be
the number of components k used to produce one unit of product i, and
hi the standard time required to produce one unit of product i. Suppose
that Rj is the amount of labor resource (in units of standard time)
available during period j, and that any unused labor resource from
period j cannot be carried out to period j + 1. Let Skj be the supply of
components k available for consumption in period j, and let Di be the
maximum demand for product i until the end of the planning horizon,
and suppose that γij is the available production capacity for each
product i in period j, prescribed by external clearing functions.
Hence, the simplest model of production planning coupled with
clearing function that can be proposed to present our approach to
the used rolling-planning scheme may be formulated as,
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ij=1 . γij is the shared capacity of
the production system for each product i in the period j. Let Wj be the
total workload of the system, and Tj its corresponding lead time, then
the value φ W T( , )j j j is the estimated capacity provided by external
clearing functions. The objective function of the problem (1) can be
modified to incorporate costs associated with inventory, work-in-
process, releases etc., provided it is maintained as a linear function,
and the corresponding constraints are written period to period or in a
cumulatively way for those resources whose leftovers can be carried
from one period to the next. Without any loss of generality, the model
(1) was chosen the simplest possible to emphasize the idea of
decomposition to solve the rolling-planning scheme, but it can
incorporate any others decision variables, without major difficulties.

Model (1) couples a linear programming model with an external
clearing function to represent the nonlinear variability of production
throughput with the workload and lead times of the system, following
the approach introduced in (Kefeli et al., 2011; de Sampaio et al., 2011,
2012, 2013a, 2013b). Since the clearing function is defined for each
resource at each period of the planning horizon, then it can simply be
combined with the decomposition scheme throughout the rolling-
planning scheme. Nevertheless, clearing function will not be discussed
here any further.

The existing decomposition schemes for model (1) have good
performance, but they do not work well in general when applied to
the model combined with rolling-planning, see for instance (de
Sampaio et al., 2014) for a counterexample that shows they may fail,
and that this failure mainly occurs because of the difficulties of
propagating the current information from a period to subsequent
periods. To overcome this shortcoming, the sub-problems foreseen in
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