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a b s t r a c t 

Existing sparse recovery based space-time adaptive processing (SR-STAP) methods discretize the angle- 

Doppler plane to generate the space-time steering dictionary, which will cause the off-grid problem, 

resulting in performance loss. This paper proposes an alternative processing model established in the 

continuous domain. Based on the positive semidefinite (PSD), block-Toeplitz, and low rank properties of 

the clutter covariance matrix (CCM), the subspace of clutter can be estimated by solving an atomic norm 

minimization problem. Then, the CCM is directly calculated by the Eigen-decomposition based process. 

If multiple independently and identically distributed (IID) training samples are available, the proposed 

method can be easily extended to the multiple measurement vector (MMV) model. With the joint spar- 

sity and same subspace assumptions of different samples, MMV based atomic norm minimization STAP 

(ANM-STAP) method can further increase the estimation accuracy of the clutter subspace, and thus im- 

prove the clutter suppression performance. Simulation results demonstrate that, in comparison with typ- 

ical SR-STAP methods, the proposed method can avoid the off-grid problem, achieve more accurate CCM 

estimation, and enjoy better clutter suppression performance with fewer training samples than the statis- 

tic STAP method. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

Space-time adaptive processing (STAP) is an effective signal pro- 

cessing technique to detect slowly moving targets in a strong clut- 

ter background for the airborne phased array radar system [1–3] . 

The performance of STAP depends on the estimation accuracy of 

clutter plus noise covariance matrix (CNCM). For classical statistical 

STAP methods, with the assumptions that the received signals of 

different range cells are independently and identically distributed 

(IID) and the training samples are target-free (i.e. no target is in- 

cluded, otherwise, the performance will be significantly degraded), 

the CNCM of the range cell under test (CUT) is usually estimated 

by the data of its adjacent range cells (i.e. the so-called training 

samples). However, the number of required IID training samples to 

obtain the suboptimal performance is so large that can hardly be 

obtained in the practical non-stationary and heterogeneous envi- 

ronments. 

In order to reduce the number of training samples while sup- 

press clutter and detect target effectively, many different types 

of STAP methods have been developed in the last few decades. 
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Reduced-dimension and reduced-rank methods [4–9] , such as 

joint-domain localization (JDL) method [4] and the multistage 

Wiener filter method [6] , can reduce the number of required train- 

ing samples to twice of the reduced dimension of the data and 

twice of the reduced clutter rank, respectively. Moreover, direct 

data domain (D3) STAP methods [10] , which only use the data of 

the CUT, can bypass the problem of training sample support. How- 

ever, the cost is the reduction of the system degree of freedom. 

Recently, knowledge-aided (KA) STAP methods [11–13] that employ 

both the prior knowledge and the data observations to capture the 

characteristics of clutter have gained increasing interests. Never- 

theless, the accurate prior knowledge of the environment provided 

by road maps, optical or radar images and global positioning sys- 

tem is often difficult to obtain and exploit in practical applications. 

Most recently, sparse representation/recovery (SR) based STAP 

(SR-STAP) methods have been extensively researched [14–20] . By 

exploiting the intrinsic sparsity of clutter and implementing ad- 

vanced reconstruction algorithms, SR-STAP methods can achieve 

high-resolution clutter angle-Doppler profile and accurate CNCM 

estimation with a very small number of training samples (even 

with single training sample). Based on the sparse property of 

the clutter vector and along with the development of SR recon- 

struction algorithms, SR-STAP method has been modified and im- 
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proved in different ways in recent years. For example, to improve 

the reconstruction accuracy of SR, multiple measurement vector 

(MMV) model and sparse Bayesian learning strategy have been ap- 

plied in [20] . Besides, aiming to reduce the computational com- 

plexity of SR-STAP methods, several methods were put forward, 

including the fast-converged sparse Bayesian learning method in 

[21] , spectrum-aided reduced-dimension SR method in [22] , beam- 

space post-Doppler dimension reduced SR -STAP method in [23] , 

etc. Furthermore, focusing on the problems caused by the array 

gain and phase errors, several methods have also been proposed 

to overcome the performance degradation [ 24 , 25 ]. By combining 

the strength of using prior knowledge, knowledge-aided sparse re- 

covery (KA-SR) STAP method was also introduced in [26] . 

However, for most existing SR-STAP methods, the signal model 

is established by discretizing the angle-Doppler plane. In such case, 

since the supporting space-time vectors of the clutter subspace 

cannot be exactly presented by the defined space-time steering 

vectors, the off-grid/basis-mismatch problem occurs. According to 

Chae et al. [27] , the off-grid problem will cause significant per- 

formance degradation. For problems caused by the discretization, 

a simple approach is to use multi-resolution refinement and de- 

crease the grid size, which, however, will give rise to high coher- 

ence of the defined dictionary. Furthermore, reducing the grid size 

will increase the dimension of the dictionary and, therefore, in- 

crease the memory usage and the computational complexity of the 

reconstruction. To solve the off-grid problem of existing SR-STAP 

methods, a dictionary learning method and a parameter-searched 

orthogonal matching pursuit (OMP) algorithm have been proposed 

in [28] and [29] , respectively. Although these methods can some- 

how eliminate the effect of off-grid problem and improve the esti- 

mation accuracy of the clutter angle-Doppler profile, the discretiza- 

tion is still necessary and the off-grid problem is unavoidable. 

Corresponding to the sparsity of vectors used in conventional 

SR and compressive sensing (CS) techniques, another signal struc- 

ture, i.e. the low-rankness of matrices, has been exploited with in- 

creasing attentions in recent years [30–32] . Low-rank matrix com- 

pletion, representation, and decomposition were widely applied in 

the radar signal processing field, such as synthetic aperture radar 

(SAR) [33] , inverse SAR (ISAR) [34] , and through the wall radar 

(TWR) [35] , etc. Inspired by these successful applications, in this 

work, the positive semidefinite (PSD), block-Toeplitz, and low rank 

properties of the clutter covariance matrix (CCM) is exploited and 

a novel STAP method with single and multiple training samples 

is correspondingly proposed. Different from the existing SR-STAP 

methods, in the proposed method, the CCM is directly estimated 

by solving an atomic norm minimization (ANM) problem and im- 

plementing the Eigen-decomposition process without discretizing 

the angle-Doppler plane and recovering the clutter angle-Doppler 

profile. Since the proposed estimation model is established in the 

continuous domain, the off-grid problem in most existing SR-STAP 

methods is avoided. Due to this property, with a small number 

of IID training samples, the proposed method can achieve more 

accurate estimation of the CCM and thus better clutter suppres- 

sion performance than existing SR-STAP methods. Simulation re- 

sults demonstrate the effectiveness of the proposed STAP method 

and its advantages over conventional classical statistical STAP and 

SR-STAP methods. 

The rest of the paper is organized as follows. In Section 2 , the 

signal model for airborne STAP radar is established, and the clas- 

sical statistical STAP method is introduced. In Section 3 , we briefly 

overview the SR-STAP method and discuss the off-grid problem 

and its effects. Our proposed ANM-STAP method with single of 

multiple training samples is presented in Section 4 . Simulation re- 

sults are given in Section 5 to validate the performance of the pro- 

posed method. Finally, Section 6 concludes the paper and presents 

some considerations of the future work. 

2. Signal model 

Consider a side-looking uniformly linear array (ULA) pulsed 

Doppler airborne radar system consisting of N elements with an 

interelement spacing d . The platform is flying with a constant mov- 

ing velocity v . With the constant pulse repetition frequency (PRF) 

f prf , a coherent burst of K pulses is transmitted in a coherent pro- 

cessing interval (CPI). Assume the clutter patches are evenly dis- 

tributed in the azimuth angles within a single range cell and there 

are totally M clutter patches after discretizing the azimuth domain. 

Given the azimuth angle θm 

, the spatial frequency and normalized 

Doppler frequency of the m th clutter patch can be expressed as 

f s m 

= d sin θm 

/λ and f t m 

= β f s m 

, where the superscript ‘s’ denotes 

space, ‘t’ denotes time, β= 2 v / (d f prf ) is the clutter ridge slope, and 

λ is the wavelength. 

Ignoring the influence of range ambiguous clutter and jamming 

signals for simplicity, the received signal of the CUT collected over 

all pulse repetition periods and all array elements can be organized 

into a NK × 1 vector x 0 , given by 

x 0 = 

∑ M 

m =1 
αm 

s t,s m 

+ αT s 
t,s 
T 

+ n 0 = x C, 0 + x T, 0 + x N, 0 (1) 

where n 0 is the additive thermal noise vector, x C , 0 is the reflec- 

tion coefficient of the m th clutter patch, clutter component, x T , 0 
is the target component, x N , 0 is the noise component, x N , 0 is the 

noise component, αm 

is the reflection coefficient of the m th clut- 

ter patch, and s t,s m 

denotes its space-time steering vector, which has 

the form of s t,s m 

= s t m 

� s s m 

, � denotes the Kronecker product, and {
s t m 

= [1 , exp ( j2 π f t m 

) , ..., exp ( j2 π(K − 1) f t m 

)] 
T 

s s m 

= [1 , exp ( j2 π f s m 

) , ..., exp ( j2 π(N − 1) f s m 

)] 
T (2) 

are temporal and spatial steering vectors of the m th clutter patch, 

respectively. In (2) , j 2 = −1, and ( ·) T denotes the transpose oper- 

ation. αT is the complex amplitude of the target, and s t,s 
T 

is the 

space-time steering vector of the target determined by its azimuth 

angle and its relative velocity to the platform. 

Assuming the clutter patches are mutually independent from 

each other, we can get the CCM R C as 

R C = E[ x C, 0 x 
H 
C, 0 ] = 

∑ M 

m =1 
| αm 

| 2 s t,s m 

(s t,s m 

) 
H 

= 

∑ M 

m =1 
| αm 

| 2 [ s t m 

(s t m 

) 
H 

] � [ s s m 

(s s m 

) 
H 

] (3) 

where E [ ·] denotes the expectation, and ( ·) H denotes the conjugate 

transpose operation. 

Furthermore, the thermal noise component x N ,0 is assumed to 

be a zero-mean complex Gaussian signal with covariance matrix 

R N = σ 2 I NK and uncorrelated with the clutter patches. Therefore, 

the clutter plus noise covariance matrix (CNCM) R I of the CUT can 

be expressed as 

R I = R C + σ 2 I NK (4) 

where σ 2 is noise power, I NK denotes an NK × NK identity matrix. 

To suppress the clutter and noise components and detect the tar- 

get, the optimal weighting vector w 0 of the STAP processor is de- 

signed by maximizing the output signal-to-interference -plus-noise 

ratio (SINR), resulting in 

w 0 = R 

−1 
I s t,s 

T 
/ [ (s t,s 

T 
) H R 

−1 
I s t,s 

T 
] (5) 

where ( ·) −1 denotes the matrix inverse operation. 

In practice, the CNCM of the CUT is unknown in advance and 

must be estimated from the homogeneous training samples [1] . 

Assume the clutter of neighboring target-free range cells are inde- 

pendently and identically distributed (IID) with the clutter in the 

CUT, the CNCM of the CUT can be estimated by the classical sta- 

tistical method via sample matrix inversion (SMI) approach, giving 

R I = (1 /L ) 
∑ L 

l=1 
x l x 

H 
l (6) 
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