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We investigate the problem of scheduling the maintenance of edges in a network, 
motivated by the goal of minimizing outages in transportation or telecommunication 
networks. We focus on maintaining connectivity between two nodes over time; for the 
special case of path networks, this is related to the problem of minimizing the busy time 
of machines.
We show that the problem can be solved in polynomial time in arbitrary networks if 
preemption is allowed. If preemption is restricted to integral time points, the problem 
is NP-hard and in the non-preemptive case we give strong non-approximability results. 
Furthermore, we give tight bounds on the power of preemption, that is, the maximum 
ratio of the values of non-preemptive and preemptive optimal solutions.
Interestingly, the preemptive and the non-preemptive problem can be solved efficiently on 
paths, whereas we show that mixing both leads to a weakly NP-hard problem that allows 
for a simple 2-approximation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Transportation and telecommunication networks are important backbones of modern infrastructure and have been a 
major focus of research in combinatorial optimization and other areas. Research on such networks usually concentrates 
on optimizing their usage, for example by maximizing throughput or minimizing costs. In the majority of the studied 
optimization models it is assumed that the network is permanently available, and our choices only consist in deciding 
which parts of the network to use at each point in time.
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Practical transportation and telecommunication networks, however, can generally not be used non-stop. Be it due to 
wear-and-tear, repairs, or modernizations of the network, there are times when parts of the network are unavailable. We 
study how to schedule and coordinate such maintenance in different parts of the network to ensure connectivity.

While network problems and scheduling problems individually are fairly well understood, the combination of both areas 
that results from scheduling network maintenance has only recently received some attention [1–5] and is theoretically 
hardly understood.

Problem definition. In this paper, we study connectivity problems which are fundamental in this context. In these prob-
lems, we aim to schedule the maintenance of edges in a network in such a way as to preserve connectivity between two 
designated vertices. Given a network and maintenance jobs with processing times and feasible time windows, we need 
to decide on the temporal allocation of the maintenance jobs. While a maintenance on an edge is performed, the edge 
is not available. We distinguish between MINCONNECTIVITY, the problem in which we minimize the total time in which 
the network is disconnected, and MAXCONNECTIVITY, the problem in which we maximize the total time in which it is 
connected.

In both of these problems, we are given an undirected graph G = (V , E) with two distinguished vertices s+, s− ∈ V . 
We assume w.l.o.g. that the graph is simple; we can replace a parallel edge {u, w} by a new node v and two edges 
{u, v} , {v, w}. Every edge e ∈ E needs to undergo pe ∈ Z≥0 time units of maintenance within the time window [re, de] with 
re, de ∈ Z≥0, where re is called the release date and de is called the deadline of the maintenance job for edge e. An edge 
e = {u, v} ∈ E that is maintained at time t , is not available at t in the graph G . We consider preemptive and non-preemptive 
maintenance jobs. If a job must be scheduled non-preemptively then, once it is started, it must run until completion without 
any interruption. If a job is allowed to be preempted, then its processing can be interrupted at any time and may resume 
at any later time without incurring extra cost.

A schedule S for G assigns the maintenance job of every edge e ∈ E to a single time interval (if non-preemptive) or a set 
of disjoint time intervals (if preemptive) S(e) := {[a1, b1], . . . , [ak, bk]} with

re ≤ ai ≤ bi ≤ de, for i ∈ [k] and
∑

[a,b]∈S(e)

(b − a) = pe.

If not specified differently, we define T := maxe∈E de as our time horizon. We do not limit the number of simultaneously 
maintained edges.

For a given maintenance schedule, we say that the network G is disconnected at time t if there is no path from s+
to s− in G at time t , otherwise we call the network G connected at time t . The goal is to find a maintenance schedule 
for the network G so that the total time where G is disconnected is minimized (MINCONNECTIVITY). We also study the 
maximization variant of the problem, in which we want to find a schedule that maximizes the total time where G is 
connected (MAXCONNECTIVITY).

Our results. For preemptive maintenance jobs, we show that we can solve both problems, MAXCONNECTIVITY and 
MINCONNECTIVITY, efficiently in arbitrary networks (Theorem 1). This result crucially requires that we are free to preempt 
jobs at arbitrary points in time. Under the restriction that we can preempt jobs only at integral points in time, the problem 
becomes NP-hard. More specifically, MAXCONNECTIVITY does not admit a (2 − ε)-approximation algorithm for any ε > 0
in this case, and MINCONNECTIVITY is inapproximable (Theorem 4), unless P = NP. By inapproximable, we mean that it is 
NP-complete to decide whether the optimal objective value is zero or positive, leading to unbounded approximation factors.

This is true even for unit-size jobs. This complexity result is interesting and may be surprising, as it is in contrast to 
results for standard scheduling problems, without an underlying network. Here, the restriction to integral preemption typi-
cally does not increase the problem complexity when all other input parameters are integral. However, the same question 
remains open in a related problem concerning the busy-time in scheduling, studied in [6,7].

For non-preemptive instances, we establish that there is no (c 3
√|E|)-approximation algorithm for MAXCONNECTIVITY

for some constant c > 0 and that MINCONNECTIVITY is inapproximable even on disjoint paths between two nodes s and t , 
unless P = NP (Theorems 5, 6). On the positive side, we provide an (� +1)-approximation algorithm for MAXCONNECTIVITY
in general graphs (Theorem 8), where � is the number of distinct latest start times (deadline minus processing time) for 
jobs.

We use the notion power of preemption to capture the benefit of allowing arbitrary job preemption. The power of pre-
emption is a commonly used measure for the impact of preemption in scheduling [8–11]. Other terms used in this context 
include price of non-preemption [12], benefit of preemption [13] and gain of preemption [14]. It is defined as the maximum 
ratio of the objective values of an optimal non-preemptive and an optimal preemptive solution. We show that the power of 
preemption is �(log |E|) for MINCONNECTIVITY on a path (Theorem 9) and unbounded for MAXCONNECTIVITY on a path 
(Theorem 12). This is in contrast to other scheduling problems, where the power of preemption is constant, e.g. [9,10].

On paths, we show that mixed instances, which have both preemptive and non-preemptive jobs, are weakly NP-hard 
(Theorem 13). This hardness result is of particular interest, as both purely non-preemptive and purely preemptive instances 
can be solved efficiently on a path (see Theorem 1 and [15]). Furthermore, we give a simple 2-approximation algorithm for 
mixed instances of MINCONNECTIVITY (Theorem 14).
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