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Surrogate models approximate a function based on a set of training points and can then predict the 
function at new points. In engineering, kriging is widely used because it is fast to train and is generally 
more accurate than other types of surrogate models. However, the prediction time of kriging increases 
with the size of the dataset, and the training can fail if the dataset is too large or poorly spaced, which 
limits the accuracy that is attainable. We develop a new surrogate modeling technique—regularized 
minimal-energy tensor-product splines (RMTS)—that is not susceptible to training failure, and whose 
prediction time does not increase with the number of training points. The improved scalability with the 
number of training points is due to the use of tensor-product splines, where energy minimization is used 
to handle under-constrained problems in which there are more spline coefficients than training points. 
RMTS scales up to four dimensions with 10–15 spline coefficients per dimension, but scaling beyond 
that requires coarsening of the spline in some of the dimensions because of the computational cost of 
the energy minimization step. Benchmarking using a suite of one- to four-dimensional problems shows 
that while kriging is the most accurate option for a small number of training points, RMTS is the best 
alternative when a large set of data points is available or a low prediction time is desired. The best-case 
average root-mean-square error for the 4-D problems is close to 1% for RMTS and just under 10% for 
kriging.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

A surrogate model is an approximation that is cheaper or more 
convenient to evaluate than the underlying model it approximates. 
The most common use of surrogate models is to replace a known 
expensive computational model when a large number of repeated 
evaluations is required, e.g., for optimization or uncertainty quan-
tification. Another common application is when we want to obtain 
a continuous function from a fixed dataset, e.g., when the data is 
obtained experimentally or from legacy code. A third application is 
smoothing an underlying model with a lower order of continuity, 
perhaps to achieve differentiability for gradient-based optimiza-
tion [1].

In discussions of surrogate models, it is beneficial to separate 
the construction and evaluation of the model, because most such 
models have parameters that are precomputed during the con-
struction stage. Here, we refer to the evaluation of the model as 
prediction. Given nx inputs and nw parameters, the prediction is 
the evaluation of
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y = f (x,w), (1)

where x ∈ R
nx is an input vector, y ∈ R is the output variable, 

and w ∈ R
nw is the vector of model parameters. We refer to the 

construction of the model as training, and thus to the dataset as 
training points. The objective of training is to compute the model 
parameters w that satisfy or approximate

ȳi ≈ f (x̄i,w), ∀1 ≤ i ≤ nt (2)

where (x̄1, ȳ1), . . . , (x̄nt , ȳnt ) are the nt training points.
Because of its wide applicability and usefulness, surrogate mod-

eling has been a topic of active research for decades [2]. In engi-
neering, kriging is one of the most commonly used methods for 
several reasons [3,4]. First, it is the most accurate method overall 
for small or moderate numbers of training points (nt < 103), as we 
confirm in Section 4. Second, kriging training and prediction times 
scale well with the number of dimensions, nx , enabling its use in 
high-dimensional problems where nx can be as high as O(102). 
Third, its stochastic interpretation provides an estimate of the pre-
diction error via the variance of the prediction point. However, the 
disadvantages of kriging include the increase in prediction time 
with the number of training points, and the propensity of the 
training to fail when the training points are too close to each other. 
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These disadvantages limit the maximum number of training points 
that kriging can handle, which in turn limits the accuracy that can 
be achieved when many training points are available.

In this paper, we are primarily motivated by applications in 
which the surrogate model is a part of a larger model. For exam-
ple, the surrogate model might approximate aircraft aerodynamic 
performance with respect to the flight conditions, where the sur-
rogate is a part of a multidisciplinary model that includes other 
disciplines represented by other models that may or may not be 
surrogates. If the set of training points is fixed, then the surrogate 
model can be trained once in advance and used repeatedly each 
time the multidisciplinary model is run. This is the case in many 
problems in multidisciplinary design optimization (MDO), and it 
encourages emphasizing prediction time more than training time. 
Predictions are made repeatedly to converge the multidisciplinary 
system, which in turn is done once per optimization iteration. In 
some problems, this can lead to millions of predictions for a surro-
gate model trained once [5]. Other applications, such as surrogate-
based optimization, place more weight on a lower training time 
because the training occurs at every optimization iteration.

We develop a new surrogate modeling method for low-dimen-
sional problems (nx ≤ 4) that we call regularized minimal-energy 
tensor-product splines (RMTS). RMTS is generally slower to train 
than kriging, but it has a fast prediction time that does not in-
crease with the number of training points. Moreover, it can work 
with much larger numbers of training points, meaning that when 
large datasets are available, e.g., when the data source is a fast but 
nondifferentiable model, the accuracy that can be achieved with 
RMTS is expected to be higher than with kriging, as we show in 
Section 4. Interest in tensor-product splines has declined in the last 
few decades because of their poor scaling with nx; however, mod-
ern computing hardware mitigates these scaling limitations and 
enables RTMS to scale up to four-dimensional problems. Moreover, 
tensor-product splines enable prediction that is orders of mag-
nitude faster than kriging when the number of training points 
is large (nt > 104). RMTS uses energy minimization and regular-
ization to improve accuracy with small datasets and to handle 
unstructured datasets, i.e., training points not arranged in a struc-
tured grid.

RMTS is available under an open-source license as part of the 
surrogate modeling toolbox (SMT).1 All the benchmarking problems, 
as well as the other surrogate modeling approaches considered in 
this paper, are included in the SMT repository, so our results are 
fully reproducible.

The paper is organized as follows. In Section 2, we review some 
of the surrogate modeling methods that are commonly used in en-
gineering: polynomials, splines, artificial neural networks, support-
vector regression, inverse-distance weighting, radial basis func-
tions, and kriging. In Section 3, we present the equations and 
solution algorithms of RMTS. In Section 4, we use a benchmark-
ing suite to evaluate RMTS and to compare the surrogate modeling 
methods in terms of training time, prediction time, and accuracy. 
We also discuss the use of RMTS in a practical MDO context deal-
ing with aircraft mission optimization.

2. Review of surrogate modeling methods

In engineering, a surrogate model is also known as a response 
surface in some contexts, or as a metamodel, reflecting the idea 
that it is a model of an underlying model. In this paper, we use 
surrogate model throughout to remain consistent, while noting that 
different terms are used in other contexts.

1 https :/ /github .com /SMTorg /smt.

Surrogate modeling approaches can be classified as interpola-
tion (if the surrogate model matches the true function value at 
each point in the training dataset) or regression (if it does not). 
Regression methods smoothly approximate noisy data, and they 
include polynomials, splines, artificial neural networks (ANN), and 
support vector regression (SVR). Interpolation methods attempt to 
smoothly and accurately fit non-noisy data, and they include in-
verse distance weighting (IDW), radial basis functions (RBFs), and 
kriging. These methods are extensively discussed in the litera-
ture [6–8].

Since RMTS is classified as an interpolation method, we review 
the regression methods briefly and explain the interpolation meth-
ods in more detail. Section 4 presents results comparing RMTS to 
IDW, RBFs, and kriging, so we also present the equations for each, 
in the form they are implemented for the benchmarking.

2.1. Regression methods

2.1.1. Polynomial regression
Polynomial regression uses low-order global polynomials in 

multiple variables to approximate the training data. Polynomial re-
sponse surfaces were originally introduced by Box and Wilson [9]. 
They have the advantage of simplicity, making them fast and easy 
to work with. However, they lack flexibility, and therefore for many 
types of problems they are less accurate than other methods.

2.1.2. Splines
The most successful surrogate modeling method using splines 

is multivariate adaptive regression splines (MARS), developed by 
Friedman [10]. MARS uses basis functions that are piecewise linear 
in each dimension and adaptively splits the basis functions using a 
greedy algorithm. MARS scales well with problem dimension (nx), 
but the downside is that both the training and prediction times 
increase with the number of knots, which is tied to accuracy.

2.1.3. Artificial neural networks
ANNs work with an interconnected set of nodes that compute 

an activation signal based on inputs, just as neurons in the brain 
fire based on impulses. These nodes are arranged in layers, where 
one layer consists of the nx inputs, another layer consists of the ny

outputs, and the remaining layers are known as hidden layers. Com-
pared to the typical surrogate modeling techniques in engineering, 
neural networks display slower convergence of error versus the 
number of training points. On the other hand, they are capable 
of dealing with significantly higher-dimensional problems, such as 
speech and character recognition.

2.1.4. Support vector regression
SVR [11] also has its roots in machine learning, but it has been 

successful as a method for surrogate modeling in engineering ap-
plications. It is typically derived first as an optimization problem 
that finds the most “flat” linear approximation with a prescribed 
precision. The dual problem yields an equivalent form with a dot 
product between the input vectors in the objective function, and 
replacing this dot product with another function leads to the gen-
eral SVR method. Choosing the Gaussian function turns out to be 
similar to RBFs with a Gaussian kernel, except that it performs re-
gression with a prescribed tolerance rather than interpolation.

2.2. Interpolation methods

2.2.1. Inverse distance weighting
IDW, also known as Shepard’s method [12], uses a linear com-

bination of the training outputs, where the coefficients are com-
puted from the inverse of the distance from the prediction point 
to each training point. It exactly interpolates unstructured data 
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