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1. INTRODUCTION

Stochastic control is an active part of control theory which
deals with data that are polluted by stochastic noise
and the aim of stochastic control is to design optimal
controller that performs the desired control task with
minimum cost despite the existence of these disturbance.
Along with the development of Pontryagin’s maximum
principle (MP), Bellman’s dynamic programming (DP)
and Kalman’s linear-quadratic (LQ) control, stochastic
optimal control theory has been well developed since early
1960s which mainly focus on Gaussian stochastic systems
under the assumption that the noises obey Gaussian
distribution (see Athans [1971]).

However, most real-life systems are governed by nonlinear
models and most stochastic noises are far from being
Gaussian distributed. Therefore, stochastic distribution
control (see Wang [2000], Yue and Wang [2003] and
references therein) for non-Gaussian stochastic system has
been studied extensively in recent years in response to the
increased requirements of many practical systems. The
primary purpose of stochastic distribution control is to
design control input such that the probability density
function (PDF) of corresponding random variable is made
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as close as possible to a required distribution shape (see Yi
et al. [2007], Yi et al. [2009]) or to minimize the entropy of
corresponding random variable (see Guo and Wang [2006],
Guo and Yin [2009], Liu et al. [2015]). Unfortunately,
most of the existing studies focus on stochastic distribution
control based on PDF functional operator mapping model
that needs the priori knowledge of stochastic input, such as
the PDF, which is a strong assumption and cannot always
be satisfied in practice.

Since Mean square error (MSE), which only concentrates
on second order statistics, is able to extract all possible
information from a giving training data set under the
linearity and Gaussianity assumptions, it has been well
employed in the training of adaptive systems including
linear filters and artificial neural networks due to the fact
that Wiener [1949] established the perspective of adap-
tive filters as statistical function approximation. However,
data densities take complex forms in many applications.
When the probability distribution involved does not obey
Gaussian distribution, MSE fails to capture all the infor-
mation in the data. Since entropy, which was introduced
by Shannon [1949], is a scalar quantity that provides a
measure of the average information contained in random
variable with a certain probability distribution function,
minimum error entropy (MEE) is superior to MSE as an
optimality criterion due to the fact that minimizing the
entropy constrains all moments of the PDF. In Erdogmus
and Principe [2002], the MEE criteria has been employed
in adaptive systems training, and it has been proved that
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σ2I for simplicity in the following formulation. Hence, by
substituting (6) into equation (5), we have

p̃k+1(ξ) =
1

N

k+1∑
i=k+1−N

G(ξ − ξi, σ
2). (7)

Moreover, it can be seen that

Ṽk+1(ξ) =

∞∫

−∞

p̃2k+1(ξ)dξ = E[p̃k+1(ξ)] (8)

H̃k+1(ξ) =− ln(

∞∫

−∞

p̃2k+1(ξ)dξ) = − ln(Ṽk+1(ξ)) (9)

where p̃k+1(ξ) is the PDF estimate of sequence {ξi} (i =

k+1−N, · · · , k+1), H̃k+1(ξ) is the corresponding quadrat-

ic Renyi’s entropy and Ṽk+1(ξ) is the information potential
defined as the argument of ln function in Renyi’s entropy.
And from eq. (8), it can be seen that the information po-
tential is actually the expectation of PDF. In this context,
minimizing the entropy is equivalent to maximizing the
information potential since ln is a monotonous function.
Hence, information potential can be used to characterize
the statistical property of random variable instead of en-
tropy to simplify the calculation.

When the estimated information potential in (8) is applied
directly, the algorithm suffers from o((N)2) computational
complexity since this is a batch method which needs all the
data. Dropping the expectation in eq.(8) and stochastically
approximating the value of this operation with the instan-
taneous value of its argument (see Erdogmus [2002]), we
obtain the stochastic estimate for information potential as
shown in the following equation.

V̂k+1(ξ) =
1

N

k∑
i=k+1−N

G(ξk+1 − ξi, σ
2) (10)

Remark 2. The length N of the sliding window should be
selected in consideration with the length of the duration
where the samples can be assumed i.i.d in theory. It is
paperworthy that the independence and identicalness of
the assumption about sample data cannot be guaranteed
in general, but all simulations proved that this violation
of the assumption does not cause any problems in practice
as the nonparametric estimator itself starts behaving as a
suitable finite-sample case cost function in all applications.

It is important to note, however, that the true value of
state vector cannot be measured directly. Hence, we should
estimate the value of {xi}, (i = 1, · · · , k) and predict
the value of xk+1 at sample time k based on the input
and output data u1, · · · , uk−1, y1, · · · , yk, then replacing
the true value with the estimate value and predicted
value in eq.(10). That is, eq.(10) should be rewritten in
the following form so that the information potential can
be used as a criterion for evaluating the randomness of
tracking error sequence.

Vk+1(e) =
1

N

k∑
i=k+1−N

G(e′k+1 − ei, σ
2) (11)

where ei = x̂i − xri, e
′
k+1 = x̂′

k+1 − xr(k+1), and x̂i is
the estimate of xi (i = 1, · · · , k), x̂′

k+1 is the one step
prediction of xk+1.

In the following section, the state observer will be con-
structed first. Then the value of xk+1 is predicted so as
to calculate Vk+1(e). Finally, the observer-based controller
will be designed so that the tracking error can be mini-
mized in some sense of probability.

3. MAIN RESULTS

In this section, the states will be estimated at first. For
system (1), the full-order observer that is of the following
structure is employed.

x̂k = f(x̂k−1) +Bk−1uk−1 +K(yk−1 − ŷk−1),

ŷk =Ckx̂k (12)

where x̂k ∈ Rn is the state estimate, ŷk ∈ R is the output
estimate, and K is the observer gain to be designed.

The observer gain K will be designed such that the error
between the measurement and estimated output ηk = yk−
ŷk is minimized in some sense of probability since the value
of xk, i.e. the value of εk = xk − x̂k is unavailable. In this
case, the stochastic quadratic information potential that
is estimated from {ηi}(i = k −N1, · · · , k) is given by

V 0
k (η) =

1

N1

k−1∑
i=k−N1

G(ηk − ηi, σ
2) ≤ V 0

k (0) (13)

where V 0
k (0) =

1
N1

∑k−1
i=k−N1

G(0, σ2).

The cost function used to update the observer gain K is
chosen as

J1k(K) =
1

2
R1k(V

0
k (0)− V 0

k (η))
2 +

1

2
KTR2kK (14)

where R1k > 0 and R2k = RT
2k ≥ 0 are weighting matrices.

From (14), it can be seen that the positive definiteness of
the cost function can be satisfied.

Since J1k(K) is a nonlinear function with respect to K,
the following damped Newton iteration algorithm will be
applied to obtain the update rule of observer gain K at
every sample time k.

∆Kk =−(R1kΞ2k +R2k)
−1(R1kΞ1k +R2kKk−1),

Kk =Kk−1 + λ1k∆Kk (15)

where

Ξk =
1

2
(V 0

k (0)− V 0
k (η))

2,

Ξ1k =
∂Ξk

∂K
|K=Kk−1

, Ξ2k =
∂2Ξk

∂K∂KT
|K=Kk−1

and λ1k is the step size.

Since eq. (15) only results from a necessary condition
for optimization, the following inequality of second-order
derivative of J1k(K) with respect to K should be satisfied
in order to guarantee the sufficiency.
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minimizing the error entropy is equivalent to minimizing
the distance between the joint densities of system input-
output and the desired input-output pairs. Besides, the
problem of optimal state estimation for stochastic systems
has been considered from the view of information theory
in Feng et al. [1997]. Also, in Xu et al. [2005], an adaptive
Luenberger observer based on MEE has been designed to
deal with the problem of nonlinear state estimation.

In this paper, an error entropy minimization algorith-
m is investigated in stochastic distribution control for a
class of non-Gaussian stochastic systems with no priori
knowledge of stochastic input. Since the error entropy
minimization algorithm we proposed relied on the use of
quadratic Renyi’s entropy and the analytical error density
distributions are not available by PDF functional operator
mapping model, nonparametric estimation of the PDF of
a random variable is required for the evaluation of its
entropy. Parzen windowing (also called kernel density esti-
mator) is an typical density estimation scheme, where the
PDF is approximated by a sum of kernels whose centers
are translated to the sample locations. A commonly used
kernel function is the Gaussian, since it is continuously
differentiable and it leads to continuously differentiable
density estimates, which can provide a computational
simplification in the gradient-based algorithm design (see
Principle et al. [2000]).

The organization of this paper is as follows. The tracking
control problem is formulated in Section 2 for a class of
nonlinear stochastic systems with no priori knowledge of
stochastic input. The main results and detailed derivations
are given in Section 3. A numerical simulation is given
in Section 4 and the performances between MSE and
MEE are compared. Finally, some conclusions are given
in Section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the following discrete time nonlinear stochastic
system:

xk+1 = f(xk) +Bkuk +Hkωk, xk|k=0 = x0

yk =Ckxk + vk (1)

where xk ∈ Rn, yk ∈ R and uk ∈ R are the state,
measured output and control input, respectively. f(·)
is a vector-valued nonlinear function. x0 ∈ Rn is the
initial condition. ωk ∈ Rs, vk ∈ R are the additive
system noise and measurement noise respectively, which
are of arbitrary distribution form rather than Gaussian
distribution. Bk, Hk, Ck are known parameter matrices
with appropriate dimensions.

The following assumptions, which are quite general, are
required to simplify the controller design procedure.

Assumption 1. {ωk}, {vk} (k = 0, 1, · · ·) are bounded,
stationary and mutually independent with no priori knowl-
edge of statistical property.

Assumption 2. The initial state x0 is independent of ωk, vk.

Assumption 3. f(·) is a known Borel measurable and
smooth function of its arguments, and assumed to satisfy
f(0) = 0 and

∥f(xk + δ)− f(xk)−Akδ∥ ≤ a1∥δ∥ (2)

where Ak ∈ Rn×n is a known constant matrix, δ ∈ Rn is
a vector and a1 is a known positive constant.

Remark 1. The nonlinear description (2), which has been
adopted in Yaz and Azemi [1993], quantify the maximum
possible derivations from a linear model with Ak as its
system parameter matrix.

The purpose of this paper is to construct the input signal
uk such that the system state xk can track that of the
ideal deterministic model (see Athans [1971]) with certain
accuracy, following

xr(k+1) = f(xrk) +Bkrk,

yrk =Ckxrk (3)

where xrk ∈ Rn, rk ∈ R and yrk ∈ R are the ideal deter-
ministic state, bounded input, and output, respectively.

Define the tracking error as ξk = xk − xrk, it can be
seen that ξk obeys non-Gaussian distribution since the
nonlinearity of system and the non-Gaussianity of random
noises. Hence, quadratic Renyi’s entropy, which is given in
the following equation, is employed beyond MSE (second-
order statistics) to quantify the statistical property for
convenience of calculation.

H2(X) = − ln

∫
p2X(x)dx (4)

where pX(x) is the PDF of random variable X.

Since the statistical properties of the stochastic inputs,
such as PDFs, are unavailable in this paper, neither the
entropy nor the PDF of the tracking error can be calcu-
lated by the functional operator mapping model (see Guo
and Wang [2006], Guo and Yin [2009], Liu et al. [2015]).
Fortunately, Parzen windowing is an efficient way to ap-
proximate the PDF of a given sample distribution (see
Devroye and Lugosi [2001]), especially in low-dimensional
spaces, and it does not need prior knowledge of the system
apart from the samples. For a given set of i.i.d samples
z1, · · · , zn drawn from q(z), the Parzen windowing estimate
for the distribution, assuming a fixed-size kernel function
Kσ(·) for simplicity, is given by

p(z) =
1

n

n∑
i=1

Kσ(z − zi) (5)

where σ is the window width, and can be optimized in ac-
cordance with the least-square cross-validation, likelihood
cross-validation, the test graph method or other rules-of-
thumb method (see Devroye and Lugosi [2001], Principe
and Erdogmus [2000]).

And Gaussian function, which is given in the following
equation, is chosen as kernel function in this paper as it is
continuously differentiable and can simplify the computa-
tion in the algorithm design (see Principe et al. [2000]).

Kσ(x) = G(x− µ,Σ) =
1

(
√
2π)n|Σ| 12

e−
(x−µ)T |Σ|−1(x−µ)

2 (6)

where µ and Σ are the mean and covariance matrix,
respectively. Since entropy is invariant to the mean of
the sample data, µ is chosen as 0 and Σ is selected as
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