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Abstract: Signal optimization is one of the most crucial problems in the traffic flow theory.
Delay at signalized intersections is the main component of travel time in urban transportation
networks. This paper investigates an analytical approach based on the shockwave theory
to estimate the delay of each vehicle joining the queue, and minimize the total delay and
delay variability at an undersaturated intersection. The optimizations are carried out for an
intersection with and without loss time and are formulated as convex programs. The global
optimal cycle length and splits are attained to minimize the delay variability.
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1. INTRODUCTION

Signal optimization of isolated intersections has been stud-
ied for a long time (Wardrop, 1952; Webster, 1958; Gazis,
1964). The seminal work of Webster (1958) proposed an
analytical formula for the optimal cycle length at an iso-
lated undersaturated intersection. However, as demon-
strated in Wagner et al. (2014), the formula is over-
simplified and does not necessarily provide the optimal
solution. Furthermore, the introduction of the kinematic
shockwave theory (Lighthill and Whitham, 1955; Richards,
1956) provided alternative methods for modelling and
analyzing the traffic flow of arterials and intersections
(see e.g. Dion et al. (2004); Skabardonis and Geroliminis
(2008); Liu et al. (2009); Cheng et al. (2011); Ramezani
and Geroliminis (2015)). The delay estimation at intersec-
tions using the shockwave theory was first presented in
Michalopoulos and Pisharody (1981), where the authors
considered a variable density at the discharge phase of the
intersection, which itself resulted in a rigorous formula.
Michalopoulos et al. (1981) proposed a heuristic signal
control algorithm for an over-saturated isolated intersec-
tion. Dion et al. (2004) presented a comprehensive litera-
ture review on the delay modelling approaches and clas-
sified them into deterministic queueing algorithms, shock-
wave based models, and microscopic simulation based ap-
proaches.

The literature on the optimization of traffic networks
can be classified into studies that (i) focus on multi-
ple interconnected intersections (Dinopoulou et al., 2006;
Kosmatopoulos et al., 2007; Ramezani et al., 2016), (ii)
investigate network-wide signal control e.g. (Diakaki et al.,
2002; Geroliminis et al., 2013; Ramezani et al., 2015;
Keyvan-Ekbatani et al., 2012), and (iii) optimize a single
isolated intersection. Gazis (1964) propose an optimization
approach based on the Pontryagin’s minimum principle

for an oversaturated isolated intersection, using a semi-
graphical methodology and employing the queueing the-
ory.

The queueing theory has been widely employed for the
signal timing optimization, relying on various numerical
optimization approaches (Haddad et al., 2010; Aboudolas
et al., 2010; Ioslovich et al., 2011; Varaiya, 2013b,a; Had-
dad et al., 2014). Haddad et al. (2010) proposed a discrete-
event max-plus approach to model the traffic flow of a two-
way isolated undersaturated intersection and minimize a
weighted sum of the red phases of the intersection as the
optimization criterion. It assumes a discrete model and a
given fixed cycle-time in the modelling and optimization
stages. Later Haddad et al. (2014) extended the theory to
consider the assumption of the lower and upper bounds of
the green phase of each intersection. In addition, the above
theory is applied in Ioslovich et al. (2011) to optimize an
oversaturated intersection assuming a continuous model
as in Gazis (1964). Moreover, Varaiya (2013b) proposed
the concept of max-pressure and apply it on the store and
forward queueing model to stabilize an arbitrary network
of correlated intersections under uncertain demands and
turning ratios.

Nevertheless, studies based on the store and forward
queueing model do not provide full spatial and temporal
characteristics of queuing dynamics. Specifically the spill-
back phenomenon cannot be fully captured. In addition,
it is well-known that when the queue in an approach ex-
ceeds the detector’s location, models based on the queuing
theory face observability problems in practical cases (Liu
et al., 2009; Cheng et al., 2011).

Accordingly, this paper investigates the traffic signal con-
trol problem at intersections using the shockwave theory.
An analytical model is presented for estimating the delay
of a vehicle joining the queue, and the distribution of
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intersection delay. Using the model, the paper formulates
the optimal cycle time and the green phase allocations at
an undersaturated intersection considering constant flow
rates per cycle in two cases of with and without nominal
loss times (LTs). The optimization of the signals is carried
out by minimizing the following objective functions: (i)
total delay and (ii) delay variability. The delay distribution
at the intersection is established, and the variance of delay
is introduced as a criterion for increasing the performance
reliability of the signal control. Undersaturation and spill-
back avoidance are formulated to define the optimization
constraints.

NOMENCLATURE

qai The arrival flow at Approach i; [veh/unit time]
qci The saturation flow (or capacity) at Approach

i; [veh/unit time]
kai The arrival traffic density at Approach i;

[veh/unit distance]
kci The saturation traffic density at Approach i;

[veh/unit distance]
kji The jam density at Approach i; [veh/unit dis-

tance]
Ri, Gi Respectively, the red phase and green phase of

Approach i in the cycle; [unit time]
C The cycle time; [unit time]
Li, L The loss time at Approach i, and the total loss

time, respectively; [unit time]
ti The time of joining the queue at Approach i;

[unit time]
xi(ti) The position of the back of the queue in

Approach i as a function of ti; [unit length]
Di(ti) Delay of the vehicle at Approach i joining the

queue at ti; [unit time]
xj
i and

tji

The position and the time of queue clearance
at Approach i, respectively

î ∈ Ω The complement of i in the set Ω

2. PRELIMINARIES OF DELAY ESTIMATION

In this section the delay of every vehicle joining the
queue at an intersection without LT is estimated using
the shockwave theory. Consequently, the effect of drivers’
reaction times is also amended in the estimation. It is
emphasized that the formulas developed in this section
are aimed at helping with the optimization and control
of traffic at the intersection. Delay formulas have been
extensively studied previously using various methods.

Variable ti ∈ [0, tji], i = {1, 2} is defined as the time of join-
ing the queue for vehicles at Approach i. The methodology
of the paper is based on the time-space diagram (TSD)
that contains the trajectory of every vehicle entering and
exiting an intersection, and the fundamental diagram (FD)
that relates the traffic flow to the traffic density based on
the characteristics of the road. TSD and FD of an approach
are related through the kinematic shockwaves. A shock-
wave is a wave created due to any abrupt change in the
states of traffic flow (Lighthill and Whitham, 1955). Fig. 1
depicts TSDs, FDs, and shockwaves of the two approaches
at a two-phase undersaturated intersection with constant
inflows.

To derive analytical formulation of delays we assume: (A1)
the transition of every individual vehicle between the free
flow speed to zero occurs with an infinite acceleration;
(A2) the average arrival and discharge flows and speeds of
each approach are constant and known; (A3) a triangular
FD is considered (Fig. 1(b)); (A4) the intersection is
two-phase; and (A5) the LT of each approach at the
intersection is known and constant. Although only two
phases are considered, this does not fail the generality of
the paper, as it is well-understood that the multiple-phase
problem is an extension of the two-phase model (Webster,
1958; Haddad et al., 2010; Varaiya, 2013a).

The shockwaves are bold solid lines depicted in Fig. 1 and
the trajectories of vehicles are shown using thin directed
lines. The slope of the shockwave from free flow to jam
density conditions in Approach i = {1, 2} is equal to the
slope of JiAi in its FD. Analogously, the transition from
jam state to the saturation flow can be described through
a shockwave with the slope of the line JiCi in the FD. This
relation is helpful in deriving the formulas of the paper.

In addition, calculating the points (tji, x
j
i), i = {1, 2},

provides an estimation of the back of the queue, which
is essential in analyzing the existence of any spillback for
non-isolated intersections, and thus devising an appropri-
ate signal setting to avoid spillback.
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Fig. 1. (a) The time-space, and (b) the FDs of each
approach at a two-phase isolated intersection.

Since the slopes of the arrival and discharge shockwaves
can be obtained from the FD, the queue clearance point
(tji, x

j
i), i = {1, 2}, can be estimated as:

tji = βiRi, (1)

xj
i =

qai

kji − kai
tji, (2)

where

βi ≜
kci

(
kji − kai

)

kji (k
c
i − kai )

> 1.

Since the vehicle that arrives to the queue at time ti starts
moving at time t̃i at the same location (see Fig. 1(a)), the
delay of the vehicle is

Di(ti) = t̃i − ti ∀ti ∈ [0, tji]. (3)

Hence, the position of the back of the queue at time ti is
formulated as
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xi(ti) =
qai

kji − kai
ti

=
qci

kji − kci
(t̃i −Ri). (4)

Therefore,

t̃i = αiti +Ri, ∀ti ∈ [0, tji], (5)

where

αi ≜
kai (k

j
i − kci )

kci (k
j
i − kai )

< 1 i = {1, 2}.

Note that 1−αi = 1/βi. Finally, the closed-form formula-
tion of delay can be written as

Di(ti) = (αi − 1)ti +Ri ∀ti ∈ [0, tji]. (6a)

Di(xi) = (αi − 1)
kji − kai

qai
xi +Ri ∀xi ∈ [0, xj

i]. (6b)

Considering constant LTs, Li, i = {1, 2}, which models
drivers reaction times, does not significantly change the
derivation of delays. The constant LTs shift the discharge
shockwaves, thus all of the formulas are still valid after
replacing Ri with R̄i ≜ Ri + Li.

3. SIGNAL OPTIMIZATION

In this section, the optimization problem is formulated
based on two objective functions with the constraint of
spillback avoidance: minimization of (i) the total delay and
(ii) the variance of delay distribution at the intersection.

3.1 Formulating the Constraints

Given the red phase Ri, it can be obtained that the
minimum green phase of Approach i must satisfy the
following inequality:

Gmin
i = Rmin

î
≥ tji −Ri +

kai
qai

xj
i i = {1, 2}, (7)

where î ∈ {1, 2} is the complement of i in the set {1, 2}.
After substituting (1) and (2) into (7), it is obtained that

Rî − ηiRi ≥ 0, (8)

where

ηi ≜
kai

kci − kai
i = {1, 2}.

Taking driver reaction times into account and recalling
that Gi + Li = Rî, (8) is modified to

Rî − ηi (Ri + Li)− Li ≥ 0. (9)

In addition, it can be shown using the queueing theory
that the necessary and sufficient condition for keeping an
intersection undersaturated is (Gazis, 1964)

∑
i=1,2

qai
qci

+
L

C
≤ 1. (10)

Since increasing the cycle time can potentially increase the
chance of spillback, a holistic optimization is essential to
avoid spillback. That is in Approach i, the position of the
back of the queue at the clearance time, i.e. xj

i, should
be less than or equal to the link length of the approach,
i.e. ∆i. This constraint can be expressed as the following
inequality:

Ri + Li − kji

(
1

qai
− 1

qci

)
∆i ≤ 0 i = {1, 2}. (11)

3.2 Minimizing the Total Delay

Intersection without Loss Time One of the most crucial
criteria for evaluating the performance of a signal con-
trol method is the total delay. Theoretically, under the
assumption of no LT in a homogeneous undersaturated
intersection satisfying Assumptions (A1)-(A4), the red
phase of each approach can be ideally equal to zero. This
indicates that there is no need for a signal to operate, and
the intersection is no longer a bottleneck. Mathematically,
this conclusion comes from Assumption (A1), where an
infinite acceleration for every individual vehicle is realized.
Nevertheless, a minimum green phase at each approach,
represented as Gmin

i , should be allocated for pedestrians
and for vehicles to safely pass the intersection. Note that
Gmin

i = Rmin
î

.

Considering the pre-defined infimum values of the red
phases, the feasibility region of the optimization problem
can be depicted as in Fig. 2 (a-c). These figures demostrate
the constraints, i.e. (8), (11), and the minimum red
phases, of the optimization problem.
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Fig. 2. The feasibility regions and possible optimal so-
lution outcomes of the dynamic cycle length control
scenario: (a-c) intersection without loss time and (d-
g) intersection with constant loss times. The black
dot point in each figure indicates the optimal signal

setting. Note that Rmax
i = kji

(
1
qa
i
− 1

qc
i

)
∆i − Li.

Total delay is the integration of the delay function in the
space direction, i.e.:

DT =
∑

i=1,2

∫ xj
i

0
kjiDi(xi)dxi

=
∑

i=1,2 γiR
2
i ,

(12)

where γi ≜ 0.5βi
qai

kj
i
−ka

i

kji. It follows that the average delay

at the intersection can be calculated as

D̄T =
DT

C(qa1 + qa2)
. (13)

Hence, the global optimal cycle-length and signal split
that minimize the total delay and ensure the spillback
avoidance and undersaturation property of the intersection
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