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a b s t r a c t 

This paper considers a simple assembly line balancing problem with fixed number of workstations and 

prespecified cycle time. Our objective is to minimize the sum of the squared deviations of the worksta- 

tion loads around the cycle time, hence maintain workload smoothing. We develop several optimality 

properties and bounding mechanisms, and use them in our branch and bound algorithm. The results of 

our computational study reveal that our branch and bound algorithm is capable of solving medium sized 

problem instances in reasonable times. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

The assembly lines are used extensively in mass production sys- 

tems to produce high quantity standardized products. They con- 

sist of a number of serially connected workstations and a mate- 

rial handling system connecting the workstations. The repetitive 

assembly operations (tasks) are performed on the workstations as 

the product flows along the line. Becker and Scholl (2006) classify 

the assembly lines into three types: single model, multi-model and 

mixed-model. We consider a single model line where the assembly 

line is dedicated to the production of one single product. 

Assembly line balancing (ALB) is the act of assigning the tasks 

to the workstations by optimizing the pre-specified objective func- 

tion without violating the precedence constraints. ALB that pro- 

duces a single model is referred to as a simple assembly line bal- 

ancing problem (SALBP). 

Based on the objective functions the SALBP can be catego- 

rized as Type I, Type II and Type III ( Baybars, 1986 ; Scholl, 1999 ; 

Scholl and Becker, 2006) . Type I problems minimize the num- 

ber of workstations given a prespecified cycle time. The cycle 

time is defined as the time between the completion times of 

two successive product units. Type II problems minimize the cy- 

cle time, hence maximize the production rate, given a prespecified 

number of workstations. Type III problems maximize the work- 

load smoothing (balancing), hence try to attain similar workstation 

loads. Boysen et al. (2007) and Battaia and Dolgui (2013) give the 

comprehensive reviews on the assembly line balancing area. We 
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hereafter refer to Type III problems as workload smoothing prob- 

lems. 

The importance of the workload smoothing problems has been 

mentioned in many studies. As stated in Rachamadugu and Tal- 

bot (1991) workload smoothing brings the notion of equity in man- 

ual assembly lines. Uneven distribution of the workloads is viewed 

unfair which might trigger different pays of the workers. The em- 

pirical study of Smunt and Perkins (1985) shows that in particu- 

lar, the long assembly lines should balance the workload among 

the workstations en route to maximizing the production rate. 

Groover (2007) mentions that the unequal distribution of tasks 

does not only create workload imbalance between workstations, 

but also increase the ergonomic risks. Otto and Scholl (2011) de- 

velop the ergonomic risk estimation methods and evaluate the 

trade-off between the number of workstations and decrease in er- 

gonomic risks. They mention that the unbalanced workload de- 

creases the remaining lifetime of the machines thereby increasing 

their breakdown probabilities and chance of reaching the target 

production rate. 

Despite the importance of the workload smoothing in as- 

sembly lines, the related research is quite scarce. All studies 

propose heuristics procedures, some noteworthy of which are 

Rachamadugu and Talbot (1991), Ponnambalam et al. (20 0 0), 

Mozdgir et al. (2013) , Rachamadugu and Talbot (1991) study 

the mean absolute deviation of the workstation loads from 

a target load and propose an iterative heuristic procedure. 

Ponnambalam et al. (20 0 0) propose a multi-objective genetic al- 

gorithm for different performance measures such as the num- 

ber of workstations and the difference between the maxi- 

mum workstation time and workloads of the each workstation. 

Mozdgir et al. (2013) propose evolutionary computation based 
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method on the differential evolution algorithm to minimize the 

sum of the squared differences between the cycle time and each 

workstation load, so called workstation smoothness index. 

Eswaramoorthi et al. (2012) and Wenping et al. (2013) consider 

workload smoothing index. Eswaramoorthi et al. (2012) present a 

two stage heuristic procedure based on the concepts of the COM- 

SOAL (computer method of sequencing operations for assembly 

lines) algorithm. Wenping et al. (2013) propose a memetic algo- 

rithm. 

In this study, we consider workload smoothing problem in sin- 

gle model assembly lines. Our main motivation is the practical im- 

portance of the problem and scarcity of the related research. 

We assume the line is already configured with a fixed num- 

ber of workstations. Moreover we assume that the cycle time is 

pre-specified, i.e., the maximum workload is below a predefined 

amount, hence the predefined target production rate is reached. 

We assign the tasks to the workstations so as to minimize the to- 

tal squared deviation around the defined cycle time. We show that 

our objective is equivalent to minimizing the sum of the squared 

workstation loads. We give the linear equivalence of our objective 

function and then define the associated mixed integer linear pro- 

gramming model. We propose a branch and bound algorithm that 

uses powerful bounding and reduction mechanisms. 

To the best of our knowledge, our study is the first optimization 

attempt for the workload smoothing problem, in assembly lines. 

The rest of the paper is organized as follows. Section 2 de- 

fines the problem and gives its mathematical model. In Section 3 , 

we settle the complexity of the problem and present the optimal- 

ity properties. The branch and bound algorithm is discussed in 

Section 4 . Section 5 reports the results of our computational study. 

Section 6 concludes the study and discusses some future research 

directions. 

2. Problem definition and the model 

Consider N tasks and K workstations. All tasks can be per- 

formed in all workstations, and all workstations are equipped iden- 

tically. We determine the assignment of the tasks to each work- 

station so as to minimize the sum of the squared deviation of 

the workload from the cycle time, hence to balance the workload 

among the workstations. 

The environment is deterministic and static, i.e., the parameters 

(task times, precedence relations) are known with certainty and 

not subject to any change. All workstations are reliable, i.e., avail- 

able at all times. 

We use the following parameters and decision variables to 

present our model. 

Parameters: 

t i : processing time of task i iε{ 1 , ..., N} 
(u, v) : precedence relations among tasks, task u should immedi- 

ately precede task v 

IP: set of all immediate predecessors 

C : cycle time 

Decision Variables: 

x ik = 

{ 

1 if task i is assigned to 

workstation k 
0 Otherwise 

iε{ 1 , ..., N} and kε{ 1 , ..., K} 

W k : sum of the task time assigned to the workstation k , i.e., 

workload of workstation k 

Our objective function is 
∑ K 

k =1 ( C − W k ) 
2 in which we mini- 

mize the sum of the squared differences between the ‘cycle time’ 

and ‘workstation load’. 
K ∑ 

k =1 

( C − W k ) 
2 is also referred to as flow in- 

dex and smoothness index, in the literature. 

Theorem 1 below shows that minimizing 
K ∑ 

k =1 

( C − W k ) 
2 is 

equivalent to minimizing total squared load over all workstations. 

Theorem 1. Minimizing 
K ∑ 

k =1 

( C − W k ) 
2 is equivalent to minimizing 

K ∑ 

k =1 

W k 
2 . 

Proof. 

Z = 

K ∑ 

k =1 

( C − W k ) 
2 = 

K ∑ 

k =1 

( C 2 − 2 C W k + W k 
2 ) 

= 

K ∑ 

k =1 

C 2 − 2 C 

K ∑ 

k =1 

W k + 

K ∑ 

k =1 

W k 
2 

K ∑ 

k =1 

W k = 

N ∑ 

i =1 

t i follows C 2 − 2 C 

N ∑ 

i =1 

t i + 

K ∑ 

k =1 

W k 
2 

Recall that the first two terms of Z are constant, hence irrele- 

vant for optimization. This follows Min Z ≡ Min 

K ∑ 

k =1 

W k 
2 �

Theorem 1 reduces our objective function to: 

Min Z = Min 

K ∑ 

k =1 

W k 
2 

We let R k be the set of tasks assigned to workstation k and 

rewrite the objective function as: 

Z = 

K ∑ 

k =1 

W k 
2 = 

K ∑ 

k =1 

[ ∑ 

i ∈ R k 
t i x ik 

] 2 

= 

K ∑ 

k =1 

∑ 

i ∈ R k 
( t i x ik ) 

2 + 

K ∑ 

k =1 

( ∑ 

i ∈ R k 

∑ 

j ∈ R k , j � = i 
t i t j x ik x jk 

) 

We define y ijk variables as: 

y i jk = 

{
1 x ik = x jk = 1 

0 Otherwise 
iε{ 1 , ..., N} , jε{ 1 , ..., N} and kε{ 1 , ..., K} 

Accordingly, our objective function can be rewritten as: 

Min Z ≡
K ∑ 

k =1 

[ ∑ 

i 

t 2 i y iik + 2 

∑ 

i 

∑ 

j 

t i t j y i jk 

] 

(1) 

We introduce the following constraint sets to support the defi- 

nition of y ijk . 

y i jk ≥ x ik + x jk − 1 ∀ i, j, k (2) 

y i jk ε { 0 , 1 } ∀ i, j, k (3) 

The constraints of the problem are introduced below. 

N ∑ 

i =1 

t i x ik = W k ∀ k (4) 

W k ≤ C ∀ k (5) 

K ∑ 

k =1 

k x uk ≤
K ∑ 

k =1 

k x v k (u , v ) εIP (6) 

K ∑ 

k =1 

x ik = 1 ∀ i (7) 

x ik ε{ 0 , 1 } ∀ i, k (8) 
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