
The Journal of Systems and Software 139 (2018) 1–13

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Efficient modeling and optimizing of checkpointing in concurrent

component-based software systems

Noor Bajunaid, Daniel A. Menascé∗

Department of Computer Science, George Mason University, Fairfax, VA 22030, USA

a r t i c l e i n f o

Article history:

Received 27 September 2017

Revised 17 December 2017

Accepted 21 January 2018

Keywords:

Checkpointing

Performance modeling

Markov Chains

Mean value analysis

Concurrent and heterogeneous

component-based software systems

a b s t r a c t

A common mechanism to improve availability and performance is checkpointing and rollback. When it

is time to checkpoint, a system stores a job’s state to nonvolatile memory, and, when a failure occurs,

it rolls back to the latest stored state instead of restarting the job from the beginning, thus improving

performance in the presence of failures. Too frequent checkpointing reduces the amount of work to be

redone in case of failures but generates excessive overhead, degrading performance. This paper presents

a novel and very efficient queuing network model that addresses software component contention for

hardware resources and shows how it can be used to model checkpointing in heterogeneous component-

based software systems. We validated this model against a previous model, developed by the authors,

that used Markov Chains. Our new model is orders of magnitude faster than the previous one and can

be used to plan for checkpointing at run-time. As an additional contribution of this paper, we present

an optimizer to find, for each software component, the optimal checkpointing interval that minimizes

execution time, maximizes availability, or minimizes checkpointing overhead.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Long-running and critical computations are expected to be

highly reliable. A well known mechanism to improve system avail-

ability and performance is checkpointing and rollback . When it is

time to checkpoint, a system stores a job’s state to nonvolatile

memory, and, when a failure occurs, it rolls back to the lat-

est stored state instead of restarting the job from the beginning.

However, the time interval between checkpoints needs to be well

planned: if this interval is too large, a big part of the work can

be lost when failures occur, whereas too frequent checkpoints can

slow down a system due to the checkpointing’s performance over-

head. In adaptive systems, planning for checkpointing can be a part

of a control loop that continually monitors and analyzes a system

state, and plans accordingly. Runtime models can be very helpful

for planning in adaptive systems (Weyns et al., 2012) and as part

of self-healing systems (Kaitovic and Malek, 2016). However, these

models need to be efficient to avoid exhausting a system’s perfor-

mance and allow for near real-time decision making.

A vast amount of work has been done over the last several

decades on the problem of finding the optimal checkpointing inter-

val. An early example is Young’s formula (Young, 1974) that relates

∗ Corresponding author.

E-mail addresses: nbajunai@masonlive.gmu.edu (N. Bajunaid),

menasce@gmu.edu (D.A. Menascé).

the optimal checkpointing rate with the time needed to checkpoint

and with the failure rate. However, none of the prior work takes

into account contention for shared resources in component-based

software systems. This contention arises from the fact that the

components and their checkpointing processes compete for shared

processing and I/O resources. It is shown in a later section of this

paper, that Young’s formula does not provide optimal results when

components compete for hardware resources. Checkpointing at a

component level is important, because it is cheaper than check-

pointing an entire system and can improve the system’s availabil-

ity.

In a recent previous work (Bajunaid and Menasce, 2017), we

proposed an analytical model, that handles contention among

components, for checkpointing in component-based software sys-

tems. The model allowed us to compute system availability, ex-

ecution time and the overhead of checkpointing on system per-

formance in the presence of contention among components. That

model can be used to statically plan the checkpointing rate given

component attributes such as average job length, failure rate, and

checkpointing resource demands. However, in modern systems that

adapt at run-time, components and their attributes change over

time, which mandates frequent planning for configurations, includ-

ing the checkpointing interval. The models used for run-time plan-

ning need to be efficient enough so that they can be used to make

near real-time decisions. Moreover, these models need to be scal-

https://doi.org/10.1016/j.jss.2018.01.032

0164-1212/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2018.01.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.01.032&domain=pdf
mailto:nbajunai@masonlive.gmu.edu
mailto:menasce@gmu.edu
https://doi.org/10.1016/j.jss.2018.01.032

2 N. Bajunaid, D.A. Menascé / The Journal of Systems and Software 139 (2018) 1–13

able to handle modern systems that consist of hundreds of thou-

sands of components.

In this paper, we propose a new and more efficient model,

called Component Phase Transition (CPT), that addresses compo-

nent contention for hardware resources. We show how this model

can be used to model checkpointing in component-based software

systems. This new model solves the same problem we addressed

in Bajunaid and Menasce (2017) and calculates the same metrics

using a significantly more efficient method. We compare the two

models to highlight how the new model significantly outperforms

previous models while producing the same accurate results (as

shown by validation through simulation and experimentation). The

second contribution of this paper is an optimizer that uses local

search to find the optimal checkpointing rate for each component

using the proposed model. This optimizer is efficient enough to be

used as part of a run-time adaptation loop.

The rest of this paper is organized as follows. Section 2 dis-

cusses some of the relevant prior work in modeling checkpoint-

ing. Section 3 provides background on checkpointing in a concur-

rent component-based system and presents the core results we ex-

pect from our models. Section 4 discusses our previous modeling

approach, which uses Markov Chains and consists of two models:

(1) the homogeneous model for systems of components that have

the same resource demands and failure rates, and (2) the hetero-

geneous model for systems of components that have different de-

mands and/or different failure rates. Section 5 introduces the Com-

ponent Phase Transition (CPT) approach and Section 6 shows how

it can be used to model checkpointing in concurrent heterogeneous

component-based systems. Section 7 presents the optimizer that

uses a hill-climbing local search method and the CPT model to find

the optimal checkpointing rate. The following section shows some

results using the optimizer. Finally, the paper discusses some con-

cluding remarks and ideas for future work.

2. Related work

There is a vast body of literature since the work

of Young (1974) on analytic models for obtaining the checkpoint-

ing interval that optimizes a variety of metrics. Some examples

include: minimize total execution time, maximize availability,

maximize a job’s progress, and minimize the overhead generated

by checkpointing and wasted work due to rollback. A compre-

hensive and relatively recent book by Wolter (2010) contains

a thorough description of many existing stochastic models for

checkpointing, restart, and rejuvenation, including many discussed

in this section, and other novel models introduced by Wolter.

However, the aforementioned models do not consider contention

among components while executing or checkpointing nor do they

consider that components may be heterogeneous. We highlight

here a few of the previous related works (see Wolter, 2010 for an

extensive bibliography).

Gelenbe and colleagues developed comprehensive models for

rollback and checkpointing under various assumptions regarding

failure time distribution and static versus dynamic checkpoint-

ing (Gelenbe, 1976; Gelenbe and Derochette, 1978; Gelenbe, 1979).

Other analytic models can be found in Chandy et al. (1975) and

Tantawi and Ruschitzka (1984) .

Previous checkpointing models used Markov Chains. For ex-

ample, Geist et al. (1988) studied the selection of checkpointing

that maximizes the probability of task completion in systems with

limited repairs in which failures are allowed to occur during the

checkpoint operation. The paper shows that the optimal check-

pointing interval depends on the distribution of both the time be-

tween failures and the number of repairs the system can han-

dle. Wong and Franklin (1993) proposed a model for synchronous

checkpointing in scientific computation of multiple nodes, under

the assumption of Markovian state occupancy and Poisson fail-

ures. They included models with and without load redistribution.

Plank and Thomason (1999) modeled checkpointing in a parallel

application that runs on a subset of processors. The goal of the

model is to select the checkpointing interval and the number of

parallel processors to maximize availability.

Nicola and Van Spanje (1990) study and compare different

checkpointing strategies and models in order to select one that

adequately represents a realistic system and is yet tractable for

analysis. Dimitrov et al. (1991) developed analytic models to find a

checkpointing schedule that optimizes a job’s total processing time

under implicit breakdowns, i.e., failures are not detected immedi-

ately but a special test has to be performed to detect the failure.

Kishor Trivedi has done substantial work in using performance

modeling to assess software reliability and the impacts of software

rejuvenation (Garg et al., 1996). The work by Ling et al. (2001) uses

variational calculus to derive a closed form expression for the opti-

mal checkpointing frequency as a function of the failure rate with

the goal of minimizing the total expected cost of checkpointing

and recovery.

Daly (2006) provides a high order estimate of the optimum

checkpoint interval to minimize total application runtime under

Poisson failures. Chen and Ren (2009) analyze the relationships

between checkpointing interval and system availability, task exe-

cution time, and task deadline miss probability, for soft real-time

applications. Bougeret et al. (2011) develop solutions for optimal

checkpointing that minimize execution time for sequential and

parallel jobs with Poisson failures and use a dynamic programming

heuristic for the case of Weibull failures.

Lu et al. (2013) derive optimal checkpointing intervals for sys-

tems with latent errors, i.e., errors that may go undetected for

some time. This assumption is more realistic than that of im-

mediate failure detection assumed by the vast majority of the

checkpointing modeling work, including ours. The authors dis-

cuss the importance of multiversion checkpoints to achieve ac-

ceptable failure coverage. Di et al. (2014) present a sophisti-

cated deterministic multilevel checkpoint optimization model in

the context of exascale systems with a large number of multi-

core nodes. The authors consider a parallel application with many

processes running on many cores. Jones et al. (2012) use sim-

ulation with real workload data to demonstrate the impact of

sub-optimal checkpoint intervals on application efficiency in HPC

clusters. No analytic model is presented. A comprehensive sur-

vey of roll-back recovery protocols in message-passing systems

was presented in Elnozahy et al. (2002) . Leach (2008) conducted

a study on the insertion of checkpoints within a legacy soft-

ware system in the aerospace domain. Recent studies have lever-

aged the use of NVRAM as a replacement to disk to store check-

points. Gao et al. (2015) discuss the design and implementation of

a checkpointing system called Mona that combines NVRAM with

DRAM; partial checkpoints are written from DRAM to NVRAM.

Besides its use for fault-tolerance, checkpointing has been

used to store a process’s state in speculative synchroniza-

tion (Martínez and Torrellas, 2002), to ease the rollback to the

synchronization point in case of conflicts. Waliullah and Sten-

strom (2008) proposed a scheme that predicts the occurrence of

conflicting accesses due to speculation in transactional memory

systems. Their schema inserts checkpoints before predicted con-

flicts to minimize the time to roll-back and improve the system’s

speedup.

3. Checkpointing in concurrent component-based systems

A set of n software components (referred to as components

hereafter), C 1 , . . . , C k , . . . , C n , execute typically long jobs (e.g., sci-

entific computations) using shared resources (e.g., processors, net-

https://isiarticles.com/article/89709

