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a b s t r a c t

Energy consumption directly determines the environmental benefits and driving range of electric ve-
hicles. The energy consumptions of vehicles are generally evaluated using standardized driving cycle
tests; however, the results from standardized driving cycle tests deviate from the results characterizing
real driving and present opportunities for cheating. The evaluation of the real-world driving energy
consumptions of electric vehicles is becoming a requirement in proposed vehicle regulations. In this
paper, a method for evaluating the energy consumption characteristics of electric vehicles under real-
world driving conditions is proposed. A simplified analytical function for estimating the energy con-
sumption of an electric vehicle is derived. Using regression analysis, the effects of driving conditions are
decoupled, and the independent energy consumption characteristics are obtained. Simulation and
experimental data are used to validate the proposed method. The results show that the independent
energy consumption characteristics obtained by the proposed method perfectly represent the energy
consumptions of electric vehicles under different driving conditions. Therefore, the proposed method
represents a possible alternative mechanism for extending the scope of energy consumption evaluations
of electric vehicles, providing a basis for the comprehensive assessment of the environmental benefits of
electric vehicles.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Global electric vehicle ownership reached 1 million in 2015 [1],
and surpassed 2 million in 2016 [2]. The number of electric vehicles
is expected to continue to grow substantially. It is pointed out that
the development of electric vehicles has been determined to be the
national strategy for solving energy and environmental problems in
China [3], but the evaluation of electric vehicles is still controver-
sial. Reference [4] addressed that the promotion of EVs make sense
only if it is ensured that a major share of electricity they use is
generated from renewable sources, because the final goal is not just
to increase the number of EVs but to reduce emissions. Similar
discussion is given in Ref. [5], by using life cycle analysis combined
with a Monte Carlo stochastic simulation, it shows that there is a
huge uncertainty in the GHG emissions reduction potential with
transport electrification. Real-world usable driving range is another
barrier affect the adoption of EVs, because it affects the user

experience [6] but cannot be accurately estimated currently. These
issues are all highly dependent on the energy consumption rates of
EVs. However, the tested energy consumption rates might not
properly represent real-world energy consumptions and presents
opportunities for cheating. After the Volkswagen diesel emissions
cheating scandal, the widening gap between results in standard-
ized tests and the real world is attracting more public concern [7].
Therefore, a challenging problem of evaluating the real-world
driving energy consumption is presented.

Generally, a constant energy consumption rate used for EV
evaluation is obtained under standardized driving cycles (NEDC,
FTP75, WLTC, etc.) from laboratory testing or simulation [8].
Compared with real driving tests, standardized driving cycle tests
conducted in the laboratory are insufficient. Traffic can be signifi-
cantly different for different routes and locations during peak and
lull periods; therefore, the test results from standardized driving
cycles are usually inconsistent with the results obtained during
real-world driving. The tested energy consumptions of EVs on
predefined routes with various drivers in Sheffield (UK) showed
that the differences between driving manners can produce up to* Corresponding author.
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30% differences in energy consumption even on the same route [9].
The driving ranges under conditions relevant to highway driving
show a significant deviation from the driving ranges published by
EV manufacturers; in Ref. [10], the simulated driving ranges at a
speed of 110 km/h under different scenarios are only 19%e27% of
the range under NEDC. Reference [11] indicated that the measured
energy consumption differences of EVs at the grid for different
standardized driving cycles (NEDC, WLTC and WMTC) were up to
25%, and the differences for different phases in a driving cycle were
up to 89%. Therefore, an evaluation method that can more
comprehensively represent the real driving energy consumptions
of EVs is required.

Simulation models, such as AVL CRUISE and AUTONOMIE [12],
are used to describe the energy consumption characteristics of EVs;
however, a large number of parameters are needed in thesemodels.
A neural network has been used to describe the energy consump-
tion characteristics of EVs under real-world driving conditions [13].
The disadvantage of neural networks is that the data processing is
complex, and the universality of the results is difficult to prove. The
difficulty in evaluating the real driving energy consumption is that
real-world driving conditions vary all the time and are not
repeatable; therefore, the energy consumptions under different
driving conditions cannot be directly compared. Principal

component analysis has been used to obtain key driving condition
factors affecting the energy consumptions of vehicles [14], but the
principal components were only used for clustering the driving
conditions; further energy consumption relationships have not
been discussed. In Ref. [15], the energy consumptions of electric
buses are estimated by fitting the coefficients of average driving
speed; however, the impact of acceleration and deceleration cannot
be considered. A computationally efficient simulation model for
estimating the energy consumptions of EVs is proposed in Ref. [16].
By using normalization factors, the nonlinear characteristics are
simplified, but normalization factors needed to be calculated from
detailed vehicle parameters. Reference [17] finds that infrastruc-
ture, traffic, topography and climate are four factors significantly
influencing the energy consumptions of EVs, and these factors can
be used for rough estimation. More accurate energy consumption
estimation of EVs by properly constructed driving condition factors
is proposed in Ref. [18], but more vehicle parameters are needed. By
analyzing the big data from real-world driving, the non-linear ef-
fects of driving speed, acceleration and temperature on the energy
consumptions of EVs are discussed in Ref. [19], the findings of
which aremacroscopic, and cannot be applied to the evaluation of a
specific EV model. In Ref. [20], a data-driven estimation method for
electric vehicle energy consumption under real-world traffic

Nomenclature

Abbreviations
Coef. Coefficient
CV Conventional vehicle
EPA Environmental protection agency
EV Electric vehicle
GHG Green house gas
HVAC Heating, ventilation and air-Conditioning
Prob. Probability
RSS Residual sum of squares
SOC State of charge
Std. Err Standard error

Standardized Driving Cycles
FTP75 Federal test procedure 75
HWFET Highway fuel economy test cycle
NEDC New European driving cycle
UDDS Urban dynamometer driving schedule
US06 US06 supplemental federal test procedure
WLTC Worldwide harmonized light vehicle test cycle
WMTC World motorcycle test cycle

Symbols
a Road grade angle [�]
Dexp Dynamometer testing results dataset
Dsim Simulation result dataset
hbat Battery efficiency [�]
hg2b Grid to battery efficiency, including the AC-DC

converter and battery [�]
hmot Electric motor efficiency, including the electric motor

and the inverter [�]
hpow Powertrain efficiency, including the driveline, electric

motor and battery [�]
hregen Brake regeneration efficiency [�]
htrans Driveline efficiency [�]
r Air density [kg/m3]

A Target coefficient A [N]
Af Frontal area [m2]
B Target coefficient B [N/(m/s)]
C Target coefficient C [N/(m/s)2]
Cd Aerodynamic drag coefficient[-]
Ce Energy consumption of electric vehicle [Wh/km]
Elossac Air conditioning losses

Elossaero Aerodynamic losses [Wh]

Elossbat Battery losses [Wh]
Ebrk Braking energy [Wh]
Elossbrk Braking losses [Wh]

Elossch Charging losses [Wh]
Edec Kinetic energy losses during deceleration [Wh]
Elossdrv Driveline losses [Wh]
Egrid Total energy consumed from grid [Wh]

Elossload Load losses, including aerodynamic and rolling friction
losses [Wh]

Elossmot Electric motor losses [Wh]

Elossroll Rolling friction losses [Wh]

Elossstart Cold start losses
f0 Rolling friction coefficient [�]
Fload Load force [N]
g Gravity acceleration [m/s2]
i Index of the discrete samples [�]
Kr Coefficient used to change the intensity of regenerative

braking [�]
m Equivalent vehicle mass, with rotating parts and

passengers [kg]
N Number of observations [�]
n Number of samples in a cycle [�]
Pac Air conditioning power
ts Sample period [s]
Tamb Ambient temperature
v Vehicle speed [km/h]
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