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a b s t r a c t

This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the
hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two
objectives, namely, the minimization of the makespan and the energy consumptions, are considered
simultaneously. In the proposed algorithm, first, each solution is represented by two vectors: the ma-
chine assignment priority vector and the scheduling vector. Second, four types of decoding approaches
are investigated to consider both objectives. Third, two efficient crossover operators, namely, Single-
point Pareto-based crossover (SPBC) and Two-point Pareto-based crossover (TPBC) are developed to
utilize the parent solutions from the Pareto archive set. Then, considering the problem structure, eight
neighborhood structures and an adaptive neighborhood selection method are designed. In addition, a
right-shifting procedure is utilized to decrease the processing duration for all machines, thereby
improving the energy consumption objective of the given solution. Furthermore, several deep-
exploitation and deep-exploration strategies are developed to balance the global and local search abil-
ities. Finally, the proposed algorithm is tested on sets of well-known benchmark instances. Through the
analysis of the experimental results, the highly effective proposed EA-MOA algorithm is compared with
several efficient algorithms from the literature.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The HFS scheduling problem is one generalization of the clas-
sical flow shop scheduling problem (FSSP), which has been verified
to be a Non-deterministic Polynomial-time hard (NP-hard) prob-
lem (Ruiz and V�azquez Rodríguez, 2010; Ribas et al., 2010). In an
HFS problem, two types of tasks should be considered simulta-
neously: assigning machines for each job and scheduling each job
on each assigned machine. Therefore, the HFS problem is harder
than the classical FSSP due to the additional consideration of par-
allel device selection for each job. Many published papers have
discussed solving the HFS problemwith many different algorithms.
We can classify these algorithms by the number of stages in the
considered problems. There are three types of problems: two-stage,

three-stage, and m-stage. The two-stage problem is the HFS prob-
lem with two consecutive stages, while the m-stage problem has a
series of m stages. Gupta (1988) studied the HFS problemwith two
stages where there is only one device in the second stage. Lin and
Liao (2003) investigated the same problem with setup time and
dedicated machines. Riane et al. (1998) developed an efficient
heuristic for minimizing the makespan in a three-stage HFS prob-
lem. Carlier and Neron (2000) proposed an exact algorithm for
solving the multi-processor flow shop. The benchmark problems
that they generated were used in many studies as test problems.

The HFS with m stages is closer to the production reality.
Therefore, it has been the focus of more research. Exact algorithms
were first applied to solve the m-stage HFS problem, such as the
Lagrange method (Chang and Liao, 1994) and the B&B algorithm
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(Portmann et al., 1998). However, exact algorithms have limited
ability to solve HFS problems with large scales. During recent years,
heuristic and meta-heuristic algorithms have been developed to
solve HFS problems, including genetic algorithm (GA) (Oguz and
Ercan, 2005; Engin et al., 2011), artificial bee colony (ABC) (Li and
Pan, 2015; Li et al., 2016a,b; Pan, 2016), iterated greedy (IG) (Ying
et al., 2014), cuckoo search algorithm (CSA) (Marichelvam et al.,
2014a,b), parallel tabu search algorithm (PTSA) (Bo _zejko et al.,
2013), particle swarm optimization (PSO) (Liao et al., 2012; Chou,
2013), estimation of distribution algorithm (EDA) (Wang et al.,
2015), bi-layer optimization approach (BLO) (Jiang et al., 2015),
artificial immune system (AIS) (Chung and Liao, 2013), local search
method (Lei and Guo, 2016), ant colony optimization (ACO) (Qin
et al., 2015), bat algorithm (Marichelvam et al., 2013), and fruit-
fly optimization algorithm (FOA) (Li et al., 2016a,b). Very recently,
some hybrid meta-heuristics have also been designed to solve HFS
problems, such as a hybrid of GA and TS (Sukkerd and
Wuttipornpun, 2016), a hybrid of ABC algorithm and several heu-
ristics (Pan et al., 2014), a hybrid of ABC and TS (Li and Pan, 2015), a
combination of GA and imperialist competitive algorithms (ICA)
(Moradinasab et al., 2013), and a hybrid of variable neighborhood
search (VNS) algorithms (Li et al., 2014a,b). Some meta-heuristics
have better global search abilities, while others have better local
search abilities. Therefore, well-designed hybrid algorithms can
always obtain better performances than single algorithms. How-
ever, most of the current literature about HFS problems has not
considered machine differences in terms of power consumption
capabilities.

In recent years, multi-objective optimization algorithms have
been considered and studied in many fields (Deb et al., 2002; Deb
and Jain, 2014; Zhang and Li, 2007; Marichelvam et al., 2014a,b;
Wang and Liu, 2014; Huang et al., 2015; Tran and Ng, 2013;
Shahvari and Logendran, 2016; Pan et al., 2011). Several multi-
objective optimization algorithms have been proposed, such as
NSGA-II (Deb et al., 2002), NSGA-III (Deb and Jain, 2014), and
MOEA/D (Zhang and Li, 2007). Most of the published multi-
objective algorithms have been investigated to solve continuous
optimization problems. There is less literature on solving multi-
objective HFS problems. Marichelvam et al. (2014a,b) proposed a
discrete firefly algorithm to solve the HFS problem considering two
objectives, i.e., makespan and the mean flow time. Wang and Liu
(2014) investigated the HFS problem with minimization of the
unavailability of the first stage machine and the makespan. Huang
et al. (2015) developed a subgroup PSO approach for solving multi-
objective two-stage HFS problems. Tran and Ng (2013) presented a
hybrid water flow algorithm for this problem considering the
minimization of themakespan and the total tardiness. Shahvari and
Logendran (2016) presented a TS-based algorithm for the minimi-
zation of two objectives simultaneously, i.e., the weighted sum of
the total weighted completion time and the total weighted tardi-
ness. It can be concluded from the above analysis that there is less
literature inwhich themulti-objective features in HFS problems are
considered, especially with the consideration of the energy effi-
ciency characteristics.

Nowadays, energy efficient algorithms are being investigated by
increasing numbers of researchers (Gahm et al., 2016; Che et al.,
2016). Zhang et al. (2014) utilized a time-indexed integer pro-
gramming formulation to minimize the electricity cost and the
carbon footprint under time-of-use tariffs in flow shop environ-
ments. For the permutation flow shop problems, Ding et al.
(2016a,b) designed a multi-objective NEH algorithm (MONEH),
where NEH is short for Nawaz et al. (1983), and a modified multi-
objective iterated greedy (MMOIG) algorithm to minimize the to-

tal energy consumption and the makespan. For parallel machine
scheduling problems, Ding et al. (2016a,b) proposed a time-
interval-based mixed integer linear programming formulation to
minimize the total electricity cost. Zhang and Chiong (2016)
investigated an enhanced local search for minimizing the total
weighted tardiness and the total energy consumption in job shop
horizons. Luo et al. (2013) developed a hybrid algorithm based on
the ant colony optimization method to solve the HFS problems
considering the electric power cost (EPC) in the presence of time-
of-use (TOU) electricity prices. Dai et al. (2013) presented a ge-
netic simulated annealing algorithm for making a significant trade-
off between the makespan and the total energy consumption in
flexible flow shop horizons. For the same problem, Tang et al.
(2016) utilized an improved particle swarm optimization method.
Lu et al. (2017) considered two objectives namely the makespan
and the energy consumption in permutation flow shop scheduling
problem. There is less literature on minimization of both the
makespan and the energy consumption in HFS problems, and there
is no published literature inwhich the setup energy consumption is
considered.

In realistic HFS environments, some stages contain multiple
devices with different processing capabilities. In addition, each
machine usually contains two states, i.e., the working state and the
standby state. In each state, the machine will consume different
volumes of energy. Furthermore, the setup energy consumption
should be considered because it is significant in practice. The main
reason for considering the setup energy consumption is that, setup
energy consumption may occur when the setup operation is per-
formed to clear the previous job from the certain container, for
example, some types of iron in a torpedo. Different pairs of jobs
may require different energy consumptions for the setup or
clearing procedure. Therefore, in this study, we consider energy
efficiency in HFS problems and minimize the energy consumptions
and makespan. The rest of this paper is organized as follows: Sec-
tion 2 gives the problem description. Then, the proposed algorithm
is presented in Section 3. Section 4 reports the experimental results
and compares themwith those of other algorithms in the literature
to evaluate the performance of the proposed algorithm. Finally, the
last section presents the conclusions of our work.

2. Problem description

2.1. Notations and constraints

In an HFS problem, there are n tasks to be processed on m de-
vices in a predefined order. All tasks and devices are available at
time zero. Pre-emption is not allowed, that is, no task can be
interrupted before the completion of its current operation. Setup
times and setup energy consumptions are considered. Problem
data are deterministic and known in advance. There are unlimited
intermediate buffers between successive stages. The objective of an
HFS problem is to schedule each task on each device such that the
makespan and energy consumptions are minimized. The notations
that are used in this paper are summarized below:

C Indices

i index of jobs, i¼ 1,2 …,n.
k index of machines, k¼ 1,2, …,m.
j index of stages, j¼ 1,2, …, s.
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