
Applied Mathematics and Computation 332 (2018) 1–18 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Scheduling with or without precedence relations on a 

serial-batch machine to minimize makespan and maximum 

cost 

Zhichao Geng 

a , Jinjiang Yuan 

a , ∗, Junling Yuan 

b 

a School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450 0 01, People’s Republic of China 
b School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450 0 01, People’s 

Republic of China 

a r t i c l e i n f o 

Keywords: 

Scheduling 

Pareto optimization 

Serial-batch 

Maximum cost 

Makespan 

a b s t r a c t 

In this paper, we consider several scheduling problems on a serial-batch machine for 

scheduling jobs with or without precedence relations. Under the serial-batch setting, the 

jobs in a batch are processed in succession and are removed until the last job in this batch 

finishes its processing. Thus, the processing time of a batch is equal to the sum of process- 

ing times of jobs in the batch. When a new batch starts, a constant setup time is required 

for the machine. The objectives of the problems involve minimizing makespan and a max- 

imum cost. For these problems, we either present polynomial-time algorithms to generate 

all Pareto optimal points and find a corresponding Pareto optimal schedule for each Pareto 

optimal point, or give the strong NP-hardness proof. Experimentation results show that the 

proposed algorithms for the considered problems are very efficient. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

A serial-batch machine can simultaneously process up to b jobs as a batch (called a serial-batch), where b stands for 

the capacity of a batch. Concerning the capacity b , the unbounded version ( b ≥ n ) and the bounded version ( b < n ) are 

distinguished in the literature. Under the setting of serial-batch, the processing time of a batch is equal to the sum of 

processing times of jobs in the batch, and the completion times of all jobs in the batch are defined to be the completion 

time of the batch which is the time point when the last job in the batch finishes its processing. Moreover, a constant setup 

time s is required for the machine at the beginning of the processing of each batch. 

Suppose that a set of n jobs J = { J 1 , J 2 , . . . , J n } are given to be processed on a serial-batch machine. All jobs and 

the machine are available from time zero. Each job J j (1 ≤ j ≤ n ) has a positive integer processing time p j , a nonnega- 

tive integral due date d j and a nonnegative integer-value cost function f j ( t ). For a given schedule σ , the cost function 

f j ( t ) depends on the completion time C j ( σ ) of job J j . Suppose that all the cost functions are regular (nondecreasing in 

the completion times of jobs) and the value of f j ( t ) can be calculated in constant time for every given time t ≥ 0. Let 

C max (σ ) = max 1 ≤ j≤n C j (σ ) denote the maximum completion time (makespan), L max = max 1 ≤ j≤n (C j − d j ) denote the maxi- 

mum lateness, and f max (σ ) = max 1 ≤ j≤n f j (C j (σ )) denote the maximum cost of all jobs in schedule σ . In this paper, our 

∗ Corresponding author. 

E-mail address: yuanjj@zzu.edu.cn (J. Yuan). 

https://doi.org/10.1016/j.amc.2018.03.001 

0 096-30 03/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2018.03.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2018.03.001&domain=pdf
mailto:yuanjj@zzu.edu.cn
https://doi.org/10.1016/j.amc.2018.03.001


2 Z. Geng et al. / Applied Mathematics and Computation 332 (2018) 1–18 

Table 1 

The time complexity of the related algorithms. 

s-batch b ≥ n b < n ≺ � C max L max f max Previously known This paper 

• • • O ( n 2 ) [15] 

• • • O ( n 5 ) [9] O ( n 4 ) 

• • • • O ( n 3 ) [10] O ( n 2 ) 

• • • • O ( n 5 ) [9] O ( n 4 ) 

• • • • • O ( n 4 ) 

• • • • • O ( n 2 ) 

• • • • O ( n 6 ) [8] O ( n 4 ) 

• • • • S-NP 

• • • • S-NP 

• • • • • S-NP 

• • • • • S-NP 

main goal is to simultaneously optimize the two objective functions C max and f max by enumerating all the Pareto optimal 

points and finding a corresponding Pareto optimal schedule for each Pareto optimal point. Such a scheduling problem is also 

called Pareto optimization scheduling which was described in detail in [6] . 

Since C max and f max are both regular, it allows us to only consider the schedules without idle times, and so, a schedule 

σ can be given by a batch sequence (B 1 , B 2 , . . . , B l ) . For the bounded serial-batch version, a schedule σ = (B 1 , B 2 , . . . , B l ) is 

feasible if the number of jobs contained in each batch B k , denoted by b k , is no more than the batch capacity b , i.e., b k ≤ b . 

In addition, the following two types of precedence relations are involved: 

• Strict precedence relations ( ≺): if J i ≺J j , then C i ( σ ) < C j ( σ ) in a feasible schedule σ . Equivalently, the batch including job 

J i must be scheduled before the batch including job J j , and so, J i and J j cannot be processed in a common batch. 

• Weak precedence relations ( �): if J i �J j , then C i ( σ ) ≤ C j ( σ ) in a feasible schedule σ . Equivalently, the batch including job 

J i must be scheduled no later than the batch including job J j . Note that, in this case, J i and J j are allowed to be processed 

in a common batch. 

Following the notations from T’kindt and Billaut [13] , the problems studied in this paper can be denoted by the following 

five forms: 

(I) 1 | s-batch , b < n | # (C max , f max ) , 

(II) 1 | ≺, s-batch , b = 2 | L max , 

(III) 1 | �, s-batch , b = 2 | L max , 

(IV) 1 | ≺, s-batch , b ≥ n | # (C max , f max ) , 

(V) 1 | �, s-batch , b ≥ n | # (C max , L max ) , 

where ‘s-batch’ stands for the setting of serial-batch, ‘ b < n ’ (‘ b ≥ n ’) stands for the bounded (unbounded) version, ‘ b = 2 ’ 

stands for the capacity of a batch being 2, and ‘ ≺’ (‘ �’) stands for the strict (weak) precedence relations. 

Batch (including serial-batch and parallel-batch) scheduling and Pareto optimization scheduling have attracted consid- 

erate research attention in the literature. We can be referred to the surveys in Allahverdi [1] , Allahverdi et al. [2] and 

Hoogeveen [7] for detail development. For our purpose, only some related works are reviewed. 

For the scheduling on an unbounded serial-batch machine, Webster and Baker [15] presented an O ( n 2 )-time dynamic 

programming algorithm for minimizing L max . Based on Webster and Baker’s algorithm [15] , He et al. [10] presented an O ( n 3 )- 

time algorithm for the Pareto optimization scheduling problem 1 | s-batch , b ≥ n | # (C max , L max ) . Later, He et al. [9] extended 

this research to problem 1 | s-batch , b ≥ n | # (C max , f max ) and provided an O ( n 5 )-time algorithm. For the same problem, He 

et al. [11] presented an improved O ( n 3 )-time algorithm. However, we show in this paper that this improved O ( n 3 )-time 

algorithm is invalid by a counter-example presented in Section 5 . Quite recently, He et al. [8] presented an O ( n 6 )-time 

algorithm for bounded problem 1 | s-batch , b < n | # (C max , L max ) . 

This paper makes an additional contribution to this topic by proceeding to investigate the above mentioned five schedul- 

ing problems (I–V). Concretely, for problems (I) and (IV), we present O ( n 4 )-time algorithms, respectively. For problem (V), 

we present an O ( n 2 )-time algorithm. Contrastively, we prove that problems (II) and (III) are both strongly NP-hard. The 

summary of the results relevant to this paper is given in Table 1 . 

This paper is organized as follows. In Section 2 , we present some preliminaries and basic lemmas. In Section 3 , we 

present an O ( n 4 )-time algorithm for problem 1 | s-batch , b < n | # (C max , f max ) . In Section 4 , we present the strong NP-hardness 

proof for problems 1 | ≺, s-batch , b = 2 | L max and 1 | �, s-batch , b = 2 | L max . In Section 5 , we present an O ( n 4 )-time algo- 

rithm for problem 1 | ≺, s-batch , b ≥ n | # (C max , f max ) and show that the O ( n 3 )-time algorithm for problem 1 | s-batch , b ≥
n | # (C max , f max ) presented in He et al. [11] is invalid. In Section 6 , we present an O ( n 2 )-time algorithm for problem 

1 | �, s-batch , b ≥ n | # (C max , L max ) . The results of some computational experiments are provided to support our proposed 

algorithms in the final section. 



https://isiarticles.com/article/89842

