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a b s t r a c t

In this paper the optimization of the thermal conductivity distribution for heat conduction enhancement
is discussed. Different optimization objectives are considered which include the conductivity weighted
quadratic temperature gradient and the weighted average temperature in the whole region or on the heat
flux boundary. The adjoint state equations and gradient relations for the optimizations are obtained by
the variational method and the 1D and 2D optimization problems are solved to demonstrate the analyses.
The analyses show that different objectives are not generally equivalent to each other. When all the tem-
perature boundaries have a same constant temperature, the optimization of the conductivity weighted
quadratic temperature gradient has the following equivalences: 1) it is equivalent to the constant tem-
perature gradient relation; 2) it is equivalent to the optimization of heat source averaged temperature
in the domain when the heat flux boundaries are adiabatic; 3) it is equivalent to the heat flux averaged
temperature on the heat flux boundary when the heat source intensity is zero. Otherwise, the configura-
tions of the optimized temperature and thermal conductivity distributions for different objectives can
have large differences. Therefore, the objectives should be carefully chosen when dealing with the heat
conduction optimizations.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The optimization of conductive heat transfer process is impor-
tant in many applications such as the cooling of the electronic
devices. A related issue is to optimize the distribution of a limited
amount of high thermal conductivity material on the base material
[1], or to optimize the shape of the high conductivity material path
for heat conduction [2]. Therefore, the heat transfer can be
enhanced and the mass or cost of the material can be reduced.
The fast developing additive manufacturing or 3D printing technol-
ogy also provides opportunities for the optimal design. The com-
plex optimal geometries can be manufactured conveniently by
these new technologies [3].

Many methods have been invented for the optimal design of the
distribution of high thermal conductivity material. Bejan proposed
the constructal theory to design the high thermal conductivity
paths for the volume-to-point heat conduction [4,5]. The design
started from the smallest building blocks and the blocks were opti-
mally assembled to build larger blocks step by step. The tree-like

configurations of the high thermal conductivity material were
generated.

The topology optimization is also widely used for the optimiza-
tion of the heat conduction. In the topology optimizations, differ-
ent kinds of algorithms and numerical techniques are applied to
optimize the material layouts for the objectives and constraints
[6]. Here the objective is the starting point of the optimization
and a variety of objectives can be used, such as the average tem-
perature or quadratic mean temperature gradient in the domain
with heat source [7,8], the heat transfer rate between temperature
boundaries per material mass [2], and the volume of the material
with the constraint of the heat flux or temperature on the bound-
ary [9].

In the recent decade, Guo et al. [10,11] introduced a new quan-
tity entransy to describe the heat transfer ability. The entransy dis-
sipation can be used to measure the irreversibility of the heat
transfer processes. Based on these concepts, the extremum princi-
ple of entransy dissipation and the minimum thermal resistance
principle were further proposed for the optimization of the heat
transfer processes, such as the volume-to-point heat conduction
[12], the convective heat transfer in tube or square cavity
[13,14], the radiative heat transfer [15] and heat exchangers [16].
However, the concepts of entransy and entransy dissipation still
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need further clarification, and the relation between the extremum
principle of entransy dissipation and other optimization objectives
should be studied.

Since objective is one of the most important points of the opti-
mization, different objectives are compared in this paper, which
include the conductivity weighted quadratic temperature gradient,
the average temperature in the whole region or on the heat flux
boundary. We hope that our study can facilitate further under-
standing and clarification of the relations and differences between
different optimization objectives, and this study can be a reference
for further researches in the field of heat transfer enhancement. In
the rest of the paper, we first analyze simple 1D optimization prob-
lems in Section 2. Then, 2D problems are analyzed in Section 3 and
the numerical simulations are used to further demonstrate the
analyses. Finally, some conclusions are given in Section 4.

2. One-dimensional problems

2.1. Description of the problems

We start with a 1D optimization example to demonstrate the
problem. In order for convenience, the problem is heat conduction
per unit of cross-section and the dimension of the problem is 1 m,
so coordinate x ranges from 0 to 1 m. The unit of each variable is
given in the Nomenclature and in the flowing equations the units
are omitted. The heat conduction equation and the boundary con-
ditions for temperature T(x) are given by:

ðaÞ : d
dx k dT

dx

� �þ Q ¼ 0; 0 < x < 1
ðbÞ : T ¼ T0; x ¼ 1
ðcÞ : k dT

dx ¼ q0; x ¼ 0

8><
>: ð1Þ

Here Q is the heat source intensity and k is the thermal conductiv-
ity. q0 is the heat flux out of the area from boundary x = 0. The tem-
perature on boundary x = 1 is specified as T = T0.

Before the optimization steps, some basic results are intro-
duced, which will be used in the rest of the paper. Firstly, if Eq.
(1a) is multiplied by a test function w with boundary condition
w(1) = 0 and integrated from 0 to 1, Eq. (1) can be shown to be
equivalent to the following weak form [17,18]:

Find TðxÞ that satisfies
Tð1Þ ¼ T0R 1
0

dw
dx k

dT
dx dx ¼ R 1

0 wQdx� wq0ð Þjx¼0

8w;wð1Þ ¼ 0

8>>><
>>>:

ð2Þ

Secondly, similarly to the principle of minimum potential
energy for elasticity problems [17], the variational principle for
heat conduction shows that the solution of the strong form (1) is
also equivalent to the minimizer of the ‘‘mathematical energy” W
(T) [18]:

W Tð Þ ¼ 1
2

Z 1

0
k

dT
dx

� �2

dx�
Z 1

0
TQdxþ Tq0ð Þjx¼0 ð3Þ

combined with the boundary condition (b) in Eq. (1). This can be
demonstrated by letting the variation of W equal zero as:

dW Tð Þ ¼
Z 1

0
k

dT
dx

� �
ddT
dx

� �
dx�

Z 1

0
QdTdxþ q0dTð Þjx¼0

¼ k
dT
dx

dT
� �����

1

0
þ q0dTð Þjx¼0 �

Z 1

0

d
dx

k
dT
dx

� �
þ Q

� �
dTdx

¼ q0 � k
dT
dx

� �
dT

� �����
x¼0

�
Z 1

0

d
dx

k
dT
dx

� �
þ Q

� �
dTdx ¼ 0 ð4Þ

Therefore, both the differential equation (a) and boundary condition
(c) in Eq. (1) can be derived from Eq. (4).

Finally, if the governing equation (a) in Eq. (1) is multiplied by T
and integrated over [0, 1], we can derive the following relation

�Tk
dT
dx

� �����
1

0
þ
Z 1

0
k

dT
dx

� �2

dx�
Z 1

0
TQdx

¼
Z 1

0
k

dT
dx

� �2

dx�
Z 1

0
TQdxþ Tq0ð Þjx¼0 � T0k

dT
dx

� �����
x¼1

¼ 0 ð5Þ

All these terms on the right hand side of the first equation in Eq.
(5) can be interpreted according to the concepts of entransy [10].
The first term is the entransy dissipation rate, the second term is
the entransy generated by the heat source and the third and fourth
terms are the entransy flux out of the domain. Therefore, Eq. (5)

Nomenclature

dS boundary element (2D: m)
dV volume element (2D: m2)
J optimization objective (1D: W K m�2, 2D: W K m�1)
k thermal conductivity (Wm�1 K�1)
�k average thermal conductivity (Wm�1 K�1)
L augmented functional (1D: W K m�2, 2D: W K m�1)
n outward-pointing unit normal vector
q heat flux (Wm�2)
Q heat source intensity (Wm�3)
T temperature (K)
w test function (K)
W mathematical energy (1D: W Km�2, 2D: W Km�1)
x space coordinate (m)

Greek symbols
a, b weight function
c total amount of thermal conductivity (1D: W K�1, 2D:

Wm K�1)
d variation
C boundary
h gradient related variable for optimization procedures
�h average value of h

k Lagrangian multiplier (K2 m�2)
X domain

Subscripts
0 constant boundary condition
b variable boundary condition
aT weighted average temperature in domain
QT heat source weighted average temperature in domain
bT weighted average temperature on flux boundary
qT heat flux weighted average temperature on flux bound-

ary
dT conductivity weighted quadratic temperature gradient
dTq combination of conductivity weighted quadratic tem-

perature gradient and average temperature at flux
boundary

dTq2 combination of half conductivity weighted quadratic
temperature gradient and average temperature at flux
boundary

T temperature boundary
q flux boundary
in inlet heat flux
1 referenced temperature
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