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space of the optimization variables or in an extended space. We provide exact
and approximation algorithms that extend the iterative algorithms proposed by
Bertsimas and Sim (2003). We also study the limitation of the approach and point
out N'P-hard situations. Then, we approximate axis-parallel ellipsoids with knap-

ggzzuso‘:i‘;timization sack constraints and provide an approximation scheme for the corresponding robust
Combinatorial optimization problem. The approximation scheme is also adapted to handle the intersection of
Approximation algorithms an axis-parallel ellipsoid and a box.

Ellipsoidal uncertainty © 2017 Elsevier B.V. All rights reserved.

1. Introduction

Robust optimization pioneered by [1] has become a key framework to address the uncertainty that arises
in optimization problems. Stated simply, robust optimization characterizes the uncertainty over unknown
parameters by providing a set that contains the possible values for the uncertain parameters and considers
the worst-case over the set. The popularity of robust optimization is largely due to its tractability for
uncertainty handling, since linear robust optimization problems are essentially as easy as their deterministic
counterparts for many types of convex uncertainty sets [1], contrasting with the well-known difficulty of
stochastic optimization approaches. In addition, robust optimization offers conservative approximation to
stochastic programs with probabilistic constraints by choosing appropriate uncertainty sets [2—4].

The picture is more complex when it comes to robust combinatorial optimization problems. Let N denote
a set of indices, with |N| = n, and X C {0,1}" be the feasibility set of a combinatorial optimization problem,
denoted by C'O. Given a bounded uncertainty set ¢/ C R}, we consider in this paper the min max robust
counterpart of CO, defined as

. T
co) gél}(lrgleazjcf x. (1)
It is well-known (e.g. [5,6]) that a general uncertainty set U leads to a problem CO(U) that is, more
often than not, harder than the deterministic problem CO. This is the case, for instance, when U is an
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arbitrary ellipsoid [7] or a set of two arbitrary scenarios [6]. Robust combinatorial optimization witnessed
a breakthrough with the introduction of budgeted uncertainty in [8], which keeps the tractability of the
deterministic counterpart for a large class of combinatorial optimization problems. Specifically, Bertsimas
and Sim considered uncertain cost functions characterized by the vector ¢ € R™ of nominal costs and the
vector d € R’} of deviations. Then, given a budget of uncertainty I" > 0, they addressed

COq4Ur) irélfvl ?61%); . (c; + &dy)x; = ;rg)r(l (Z cix; + ?613); Z &dixi) ,
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for the budgeted uncertainty set Uy := {f Y enG SI,0<6<1,i€ N} . Bertsimas and Sim [8] proved
two fundamental results:

Theorem 1 (/8]). Problem CO4(Ur) can be solved by solving n + 1 problems CO with modified costs.

Theorem 2 (/8]). If CO admits a polynomial-time (1 + €)-approximation algorithm running in O(f(n,¢)),
then CO4(Ur) admits a polynomial-time (1 + €)-approzimation algorithm running in O(nf(n,e€)).

These positive complexity results have been extended up to some extent to optimization problem with
integer variables (i.e. X C Z") and constraints uncertainty in [9,10].

Another popular uncertainty model involves ellipsoids, and more particularly, axis-parallel ellipsoids,
which we represent here through the robust counterpart

COa(Uparr) min (;V ity + (max. %5%%) ,

where ¢ now represents the center of the ellipsoid, d gives the length of its axes, and Uy, is a ball of
radius 2, Upan = {€ : ||€|l2 < 2} . Nikolova [11] proposes a counterpart of Theorem 2 for COq4(Upqu) with
a running time slightly worse than O(Ei2 f(n,€)). Her approach considers the problem as a two-objective
optimization problem and approximates its pareto front. Other authors have addressed problem CO4(Upair),
including Mokarami and Hashemi [12] who showed how the problem can be solved exactly by solving a
pseudo-polynomial number of problems CO and [13,14] who provide polynomial special cases. A drawback
of CO4(Upan) from the practical viewpoint is that Upey contains vectors with high individual values. For
that reason, a popular variation considers instead the uncertainty set defined as the intersection of a ball
and a box, formally defined as UPh = {&: ||€]l2 < 02, - < € <&}, for some &€ € R}. While U9 has
been used in numerous papers dealing with robust optimization problems (e.g. [15,16]), we are not aware of
previous complexity results for CO4(ULE).

The main focus of this paper is to study robust combinatorial optimization problem for uncertainty
polytopes defined by bounds restrictions and s = |S| knapsack constraints, specifically

Uknap = {EGRniZajifi<bj,j65,0<§<f}a (2)
ieN
where a € R, b € RY, and £ € R?” . Our definition Uyyqyp is slightly more general than the multidimensional
knapsack-constrained uncertainty set introduced in [17,18] since we consider non-negative values for the
constraint coefficients while [17,18] assume all of them equal to 1. The author of [17,18] motivates the
introduction of these complex polytopes in the context of multistage decision problems, where one wishes
to correlate the value of uncertain parameters of a given period to those related to the precedent periods.
We relate next Upnap with the uncertainty polytopes that have been used in the literature for
specific applications. Whenever s = 1, the resulting family of polytopes generalizes the uncertainty set
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