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a b s t r a c t

A recent biological study shows that the extremely good efficiency of fruit flies in finding food, despite
their small brain, emerges by two distinct stimuli: smell and visual contrast. ‘‘contrast-based fruit fly
optimization”, presented in this paper, is for the first time mimicking this fruit fly behaviour and devel-
oping it as a means to efficiently address multi-parameter optimization problems. To assess its perfor-
mance a study was carried out on ten mathematical and three truss optimization problems. The
results are compared to those obtained using twelve state-of-the-art optimization algorithms and con-
firm its good and robust performance. A sensitivity analysis and an evaluation of its performance under
parallel computing were conducted. The proposed algorithm has only a few tuning parameters, is intu-
itive, and multi-faceted, allowing application to complex n-dimensional design optimization problems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Design optimization is a powerful tool widely utilised by engi-
neers to produce better performing, more reliable and cost-
effective products. It originated from the aircraft industry and
rapidly expanded in multiple domains like structural and mecha-
tronics engineering [1–3]. Its success is mainly due to its inherent
merit, delivered in combination with a significant increase in com-
putational power and accessibility to practitioners through com-
mercial engineering software [4]. The mathematical formulation
of an optimization problem can be expressed as:

minimize fðxÞ
subject to : heq jðxÞ ¼ 0; eq j ¼ 1;2; . . . ; neq

gineq jðxÞ 6 0; ineq j ¼ 1;2; . . . ;nineq

ð1Þ

where fðxÞ is the objective function that expresses the performance
of a system, x is a vector comprised out of m design variables, neq
and nineq are the number of equalities and inequalities described
by the functions heq j and gineq j respectively.

Initially, optimization technology – including the steepest des-
cent, the conjugate gradient, the Newton and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) methods – was based on mathe-

matical formulations involving the calculation of first and/or sec-
ond derivatives [5,6]. For example, in the gradient descent
method, one starts from an initial point x0 where the function
value fðx0Þ is calculated and then takes a step in a downward direc-
tion, where the function value will be lower. To make such a step,

one utilises local information rf Tðx0Þ and explores the immediate
vicinity of the current point. The search for the optimum design
vector x� is expressed by the following iterative formula:

x½kþ 1� ¼ x½k� � a½k� � rf Tðx½k�Þ ð2Þ
where a½k� is a scaling parameter, k is the iteration number, x½k� is
the design vector in kth iteration and x½kþ 1� is the new design vec-
tor. It is highlighted that gradient-based optimization methods con-
verge to the optimum value in only a few iterations and are
considered to be the best approach for solving many optimization
problems, at least in a local context.

Although mathematically rigorous, gradient-based algorithms
get trapped in local minima in the case of noisy or highly nonlinear
problems. By contrast, meta-heuristic optimization algorithms like
the Genetic Algorithm [7], Particle Swarm Optimization [8] and Har-
mony Search [9] do not use gradient information and are better sui-
ted for global optimization problems. On the downside, the
performance of non-gradient algorithms depends on a number of
tuning parameters which are not known a priori.

Although, in some cases, for the meta-heuristic algorithms
empirical rules exist, they are not always adequate. There is a need
for intuitive meta-heuristic algorithms with a minimum number of
tuning parameters.
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2. Brief literature review on truss optimization

Trusses are fundamental in structural engineering and applica-
tions can be found from nano to macro levels [10,11]. Truss opti-
mization problems are usually multi-parameter optimization
problems owing to the large number of members comprising the
truss. They are also highly nonlinear because of the multiple con-
straints considered, including displacement, stress and natural fre-
quency, and the complex interaction between the structural
members. In the general case, the truss optimization problem is
formulated as a mathematical optimization problem:

find design vector x

that minimizes RðxÞ ¼
Xn
q¼1

qq � Aq � Lq

subject to : dqmin 6 dq 6 dqmax; q ¼ 1;2; . . . ; nn

rqmin 6 rq 6 rqmax; q ¼ 1;2; . . . ;nn

Aqmin 6 Aq 6 Aqmax; q ¼ 1;2; . . . ;n
xqmin 6 xq 6 xqmax; q ¼ 1;2; . . . ;nx

ð3Þ

where R is the mass of the truss, n is the number of truss members,
nn is the number of nodes, and nx the number of desired natural fre-
quencies. qq, Aq and Lq are the density, cross sectional area and
length of qth member respectively. dq and rq are the displacement
and stress at the qth node.xq is the qth natural frequency. dqmin and
dqmax are the lower and upper displacement bounds for the qth node,
rqmin and rqmax are the lower and upper normal stress bounds for
the qth node, Aqmin and Aqmax are the lower and upper cross sectional
area bounds for the qth structural member and xqmin and xqmax are
the lower and upper bounds for the qth natural frequency.

There is an increasing interest in developing efficient algo-
rithms for large-scale truss optimization. The algorithms are
mainly meta-heuristic and broadly classified into three categories.

The first category encompasses the Evolutionary Algorithms
(EA). EAs use mechanisms inspired by biological evolution, such
as reproduction, mutation, recombination, and selection for calcu-
lating new candidates. EAs usually suffer from premature conver-
gence and weak exploitation capabilities. Both drawbacks are
compensated by choosing bigger populations, however, this leads
to larger computational cost. Wei et al. [12] proposed, as a solution
to this problem, the Niche Hybrid Parallel Genetic Algorithm
(NHPGA). NHPGA aims to effectively combine the robust and glo-
bal search characteristics of the genetic algorithm, the strong
exploitation ability of Nelder-Mead’s simplex method, and the
computational speed of parallel computing.

The second category encompasses physical algorithms that
resemble an employed physical process. For example, Kaveh and
Bakhshpoori [13] developed an algorithm that mimics the evapora-
tion of a tiny amount of water molecules on a solid surface with
different wettability. The ‘‘Water Evaporation Optimization Algo-
rithm” was tested and analysed in comparison to other existing
methods on a set of 17 benchmark unconstrained functions, a set
of 13 classical benchmark constraint functions, and three bench-
mark constraint engineering problems. The results obtained indi-
cate that the proposed technique is highly competitive. The
performance of the algorithm depends on a number of parameters,
including the assumption of a monolayer and droplet evaporation
phase, the number of water molecules and the minimum and max-
imum values of monolayer and droplet evaporation probabilities.
Another example is the modified Teaching-Learning-based optimiza-
tion (TLBO) algorithm [14]. TLBO mimics the two types of pedagogy
in a classroom to find the optimum solution: class-level learning
from a teacher, and individual learning between students. TLBO

uses a relatively simple algorithm with no intrinsic parameters
controlling its performance.

The third category includes population-based algorithms, such
as Particle Swarm Optimization (PSO) [15]. PSO is formulated by
mathematically modelling the social behaviour of birds and fish
colonies in finding food resources or escaping from predators. In
the standard PSO each member of the swarm finds its way based
on their own experience and the best particle’s position: particles
do not exchange any information. This causes PSO to get trapped
into local optima. In a recent publication by Mortazavi and Toğan
[16] a new version of PSO was proposed. In this version, the con-
cept of a weighted particle, created by exploiting all particles’
experiences, is introduced. This helps to avoid premature
convergence.

Other popular population-based algorithms are the artificial bee
colony, the ant colony and the bacterial algorithm. In [17] the Arti-
ficial Bee Colony algorithm (ABC) is applied to truss optimization
problems. ABC models the honeybee foraging behaviour in the nat-
ural environment. In a bee colony, the female bees start to search
for food randomly. After finding a food source, the bee returns to
the hive and informs her nest mates about her findings. The infor-
mation concerns the food source; the direction in which it can be
found; distance from the hive; and its quality. In a decentralised
and intelligent manner, some of the bees follow their nest mates
to the food source, while others search for food independently.

The ant colony optimization method (ACO) is employed in [18]
for solving truss optimization problems with cardinality con-
straint. ACO models the food search behaviour of real ants. Ants
deposit pheromone on the ground to mark their path and to inform
other ants about the food location. The more ants concentrate in an
area, the more pheromone is laid, and this will attract even more
ants. By contrast, locations with no food have lower levels of pher-
omone, which diminish over time owing to evaporation.

In [19] three different variants of the bacterial foraging opti-
mization algorithm are presented for solving a 10-bar truss struc-
tural optimization problem. The bacterial foraging algorithm
models the foraging behaviour of Escherichia coli bacteria, which
is characterised by three phases: chemotaxis, reproduction, and
elimination-dispersal. In the chemotaxis phase, every bacterium
moves a single step towards a random position. If an improvement
in the objective function is achieved, the bacterium continues mov-
ing in the same direction till a stopping criterion is met. In the
reproduction phase the bacteria with bad performance are elimi-
nated while those with good performance are replicated. The per-
formance is determined by the sum of all chemotaxis steps
performed. In the dispersion phase randomly-selected bacteria
are substituted by other randomly generated bacteria.

Fruit fly optimization (FOA) is a recently developed population-
based optimization algorithm [20]. Fruit flies can very effectively
find food at very long distances. This, in combination with the fact
that their brain is very simple (it has only 100,000 neurons com-
pared to house fly brains that have 300,000 neurons and human
brains which have 100 billion), makes them very interesting from
a biological and optimization perspective [21,22]. It is well-
known that the main food search mechanism of fruit flies is based
on smell. However, a recent biological study reveals that the search
mechanism is stimulated also by visual contrasts, which are irrel-
evant to smell. Furthermore, their motion is described by standard-
ised distinct sensory-motor reflexes, independent of each other.
The contrast-based fruit fly optimization algorithm, proposed in this
paper, mimics those recently discovered elements of fruit fly food
search behaviour. The algorithm is, first, evaluated on a set of stan-
dard mathematical benchmark tests and then applied to structural
truss design benchmark problems.

It is highlighted that fruit fly algorithms have never been tested
in structural optimization before. The results show that the algo-
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