Accepted Manuscript

Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can there be too much of a good thing?

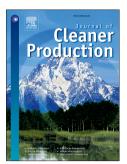
Sabbie A. Miller

PII: S0959-6526(18)30008-8

DOI: 10.1016/j.jclepro.2018.01.008

Reference: JCLP 11688

To appear in: Journal of Cleaner Production


Received Date: 26 September 2017

Revised Date: 1 January 2018

Accepted Date: 3 January 2018

Please cite this article as: Miller SA, Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can there be too much of a good thing?, *Journal of Cleaner Production* (2018), doi: 10.1016/j.jclepro.2018.01.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can
2	there be too much of a good thing?
3 4	Sabbie A. Miller Department of Civil and Environmental Engineering, University of California, Davis
5	2001 Ghausi Hall, One Shields Ave, Davis, CA
6	T +1 530 754 6407, E sabmil@ucdavis.edu
7 8	
8 9	Word Count: 8763
10	Abstract: Among the many possible strategies for reducing anthropogenic greenhouse gas (GHG)
11	emissions is reduction of emissions associated with the production of concrete, which is responsible for
12	8-9% of global emissions. Using supplementary cementitious materials (SCMs) in concrete to offset
13	demand for clinker in cement is a commonly proposed method to cut GHG emissions from concrete
14	production. The most commonly used SCMs are industrial byproducts, such as fly ash and ground
15	granulated blast furnace slag, but the extent to which these SCMs should be used in individual concrete
16	mixtures is not well examined. This research examines the contribution of fly ash and ground granulated
17	blast furnace slag, common SCMs, to material properties, the role of allocation in the assessment of
18	environmental impacts, and the impacts of transportation. Quantitative assessments are developed using
19	environmental impact assessments and comparisons are drawn based on changes in GHG emissions for
20	concrete production. The findings of this research show that these three factors can outweigh benefits
21	associated with use of SCMs: depending on SCM type and use of allocation or changes in
22	transportation, high levels of SCM replacement do not consistently result in lower GHG emissions for
23	the production of concrete. Limited supplies of these popular byproduct SCMs amplifies concerns about
24	increasing the rates at which they are used. Within the limitations of this study, this work shows greater
25	efficient use of SCMs should be implemented.
26	

27

Keywords: Cementitious materials; Greenhouse gas emissions; Fly ash; Blast furnace slag; Co-product
 allocation; Material efficiency

30

دريافت فورى 🛶 متن كامل مقاله

- امکان دانلود نسخه تمام متن مقالات انگلیسی
 امکان دانلود نسخه ترجمه شده مقالات
 پذیرش سفارش ترجمه تخصصی
 امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 امکان دانلود رایگان ۲ صفحه اول هر مقاله
 امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 دانلود فوری مقاله پس از پرداخت آنلاین
 پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات
- ISIArticles مرجع مقالات تخصصی ایران