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A B S T R A C T

In this paper the testing of normality for unconditionally heteroscedastic macroeconomic time series is studied.
It is underlined that the classical Jarque-Bera test (JB hereafter) for normality is inadequate in our framework.
On the other hand it is found that the approach which consists in correcting the heteroscedasticity by kernel
smoothing for testing normality is justified asymptotically. Nevertheless it appears from Monte Carlo experiments
that such a methodology can noticeably suffer from size distortion for samples that are typical for macroeconomic
variables. As a consequence a parametric bootstrap methodology for correcting the problem is proposed. The
innovations distribution of a set of inflation measures for the U.S., Korea and Australia are analyzed.

1. Introduction

In the econometric literature, the Jarque and Bera (1980) test is
routinely used to assess the normality of variables. The properties of
this test are well documented for stationary conditionally heteroscedas-
tic processes. For instance Fiorentini et al. (2003), Lee et al. (2010,
2012) investigated the JB test in the context of GARCH models. How-
ever few studies are available on the distributional specification of time
series in presence of unconditional heteroscedasticity. Drees and Stărică
(2002), Mikosch and Stărică (2004) and Fryźlewicz (2005) investigated
the possibility of modeling financial returns by nonparametric meth-
ods. To this end, Drees and Stărică (2002) and Mikosch and Stărică
(2004) examined the distribution of S&P500 returns corrected from
heteroscedasticity. On the other hand Fryźlewicz (2005) pointed out
that large sample kurtosis for financial time series may be explained
by non constant unconditional variance. In general we did not found
references that specifically address the problem of assessing the dis-
tribution of unconditionally heteroscedastic time series. Note that non
constant variance constitutes an important pattern for time series in
general, and macroeconomic variables in particular. Reference can be
made to Sensier and van Dijk (2004) who found that most of the 214
U.S. macroeconomic time series they studied have a time-varying vari-
ance. In this paper we aim to provide a reliable methodology for testing
normality for small samples time series with non constant unconditional
variance.

The structure of the paper is as follows. In Section 2 we first set the
dynamics ruling the observed process. In particular the unconditional
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heteroscedastic structure of the errors is given. The inadequacy of the
standard JB test in our framework is highlighted. The approach consist-
ing in correcting the errors from the heteroscedasticity for building a
JB test is presented. We then introduce a parametric bootstrap proce-
dure that is intended to improve the normality testing for uncondition-
ally heteroscedastic macroeconomic time series. In Section 3 numeri-
cal experiments are conducted to shed some light on the finite sam-
ple behaviors of the studied tests. In particular it is found that when
estimating the non constant variance structure by kernel smoothing, a
correct bandwidth choice is a necessary condition for the good imple-
mentation of the normality tests based on heteroscedasticity correction.
We illustrate our outputs by examining the distributional properties of
the U.S., Korean and Australian GDP implicit price deflators.

2. Testing normality in presence of unconditional
heteroscedasticity

We consider processes (yt) which can be written as

yt = 𝜔0 + xt ,

xt =
p∑

i=1
a0ixt−i + ut , (2.1)

where y1,… , yn are available, n is the sample size and E(xt ) = 0. The
conditional mean of xt is driven by the autoregressive parameters 𝜃0 =
(a01,… , a0p)′, which fulfill the following condition.
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Assumption A0. The a0i ∈ ℝ, 1 ≤ i ≤ p, are such that det(a(z)) ≠ 0 for
all |z| ≤ 1, with a(z) = 1 −

∑p
i=1 a0izi.

In the assumption A1 below, the well known rescaling device intro-
duced by Dahlhaus (1997) is used to specify the errors process (ut ). For
a random variable v we define ‖v‖q = (E|v|q)1∕q, with E|v|q < ∞ and
q ≥ 1.

Assumption A1. We assume that ut = ht𝜖t where:

(i) ht ≥ c > 0 for some constant c > 0, and satisfies ht = g(t∕n),
where g(r) is a measurable deterministic function on the inter-
val (0,1], such that supr∈(0,1]|g(r)| < ∞. The function g(.) satisfies
a Lipschitz condition piecewise on a finite number of some sub-
intervals that partition (0, 1].

(ii) The process (𝜖t) is iid and such that E(𝜖t) = 0, E(𝜖2
t ) = 1, and

E(‖𝜖t‖8𝜈) < ∞ for some 𝜈 > 1.

The non constant variance induced by A1(i) allows for a wide
range of non stationarity patterns commonly faced in practice, as for
instance abrupt shifts, smooth changes or cyclical behaviors. Note that
in the zero mean AR case, tools needed to carry out the Box and Jenk-
ins specification-estimation-validation modeling cycle, are provided in
Patilea and Raïssi (2012, 2013) and Raïssi (2015). For 𝜔0 ≠ 0 define
the estimator 𝜔̂ = n−1 ∑n

t=1 yt , and xt(𝜔) = yt − 𝜔 for any 𝜔 ∈ ℝ. Writ-
ing 𝜔̂ − 𝜔0 = n−1 ∑n

t=1 xt , it can be shown that√
n(𝜔̂ − 𝜔0) = Op(1), (2.2)

using the Beveridge-Nelson decomposition. Now let

𝜃(𝜔) =
(
Σx(𝜔)

)−1
Σx(𝜔), (2.3)

where

Σx(𝜔) = n−1
n∑

t=1
xt−1(𝜔)xt−1(𝜔)

′ and

Σx(𝜔) = n−1
n∑

t=1
xt−1(𝜔)xt−1(𝜔),

with xt−1(𝜔) = (xt−1(𝜔),… ,xt−p(𝜔))′. With these notations define the
OLS estimator 𝜃(𝜔̂) and the unfeasible estimator 𝜃(𝜔0). Straightforward
computations give

√
n(𝜃(𝜔̂) − 𝜃(𝜔0)) = op(1), so that using the results of

Patilea and Raïssi (2012) we have√
n(𝜃(𝜔̂) − 𝜃0) = Op(1). (2.4)

Once the conditional mean is filtered in accordance to (2.2) and
(2.4), we can proceed to the test of the following hypotheses:

H0 ∶ 𝜖t ∼  (0, 1) vs. H1 ∶ 𝜖t has a different distribution,

with the usual slight abuse of interpretation inherent of the use JB test
for normality testing. Clearly the skewness and kurtosis of ut correspond
to those of 𝜖t . However in practice E(u3

t ) = 0 and E(u4
t )∕E(u2

t )
2 = 3 is

checked using the JB test statistic:

Qu
JB = n

[
QS,u

JB + QK,u
JB

]
, (2.5)

where

QS,u
JB =

𝜇2
3

6𝜇3
2

and QK,u
JB = 1

24

(
𝜇4
𝜇2

2
− 3

)2

,

with 𝜇j = n−1 ∑n
t=1 (ût − û)j and û = n−1 ∑n

t=1 ût . The ût ’s are the resid-
uals obtained from the estimation step. Let us denote by ⇒ the con-
vergence in distribution. If we suppose the process (ut ) homoscedastic
(g(.) is constant), then the standard result Qu

JB ⇒ 𝜒2
2 is retrieved (see Yu

(2007), Section 2.2). However under A0 and A1 with g(.) non constant
(the unconditionally heteroscedastic case) we have:

QK,u
JB = 1

24
[
𝜅2

(
E (𝜖4

t )
)
− 3

)
+ 3

(
𝜅2 − 1

)]
+ op(1), (2.6)

where 𝜅2 = ∫ 1
0 g4(r)dr(

∫ 1
0 g2(r)dr

)2 . Hence if we suppose the errors process uncon-

ditionally heteroscedastic with E(𝜖4
t ) = 3, we obtain Qu

JB = Cn + op(n) for
some strictly positive constant C. As a consequence, the classical JB
test will tend to detect spuriously departures from the null hypothe-
sis of a normal distribution in our framework. This argument was used
by Fryźlewicz (2005) to underline that unconditionally heteroscedastic
specifications can cover financial time series that typically exhibit an
excess of kurtosis.

In order to assess the distribution of S&P500 returns, Drees and
Stărică (2002) considered data corrected from heteroscedasticity, using
a kernel estimator of the variance. We will follow this approach in the
sequel considering

ĥ
2
t =

n∑
i=1

wti(ûi − û)2, 1 ≤ t ≤ n,

with wti =
(∑n

j=1 Ktj

)−1
Kti, Kti = K((t − i)∕nb) if t ≠ i and Kii = 0, where

K(⋅) is a kernel function on the real line and b is the bandwidth. The
following assumption is needed for our variance estimator.

Assumption A2. (i) The kernel K(⋅) is a bounded density function
defined on the real line such that K(⋅) is nondecreasing on (−∞, 0] and
decreasing on [0,∞) and ∫ℝv2K(v)dv < ∞. The function K(⋅) is differen-
tiable except a finite number of points and the derivative K′(⋅) satisfies
∫ℝ|xK′(x)|dx < ∞. Moreover, the Fourier Transform  [K](⋅) of K(⋅) sat-
isfies ∫ℝ|s|𝜏 | [K](s)| ds < ∞ for some 𝜏 > 0.

(ii) The bandwidth b is taken in the range 𝔅n = [cminbn, cmaxbn] with
0 < cmin < cmax < ∞ and nb4−𝛾

n + 1∕nb2+𝛾
n → 0 as n → ∞, for some small

𝛾 > 0.
Let 𝜖t = (ût − û)∕ĥt . We are now ready to consider the following JB

test statistic:

Q𝜖
JB = n

[
QS,𝜖

JB + QK,𝜖
JB

]
,

where

QS,𝜖
JB =

𝜈2
3

6𝜈3
2

and QK,𝜖
JB = 1

24

(
𝜈4
𝜈2

2
− 3

)2

,

with 𝜈j = n−1 ∑n
t=1 𝜖

j
t . The following proposition gives the asymptotic

distribution of Q𝜖
JB.

Proposition 1. Under the assumptions A0, A1 and A2, we have as n → ∞

Q𝜖
JB ⇒ 𝜒2

2 , (2.7)

uniformly with respect to b ∈ 𝔅n.

Proposition 1 can be proved using the same arguments given in Yu
(2007), together with those of the proof of Proposition 4 in Patilea and
Raïssi (2014). Therefore we skip the proof. For building a test using the
above result, we suggest to choose the bandwidth by minimizing the
cross-validation (CV) criterion (see Wasserman (2006, p69-70)). On the
other hand several kernels available in the literature can be used. In the
numerical experiments section below, we consider the Gaussian kernel
and choose the bandwidth by CV unless otherwise specified. The test
obtained using (2.7) and choosing the bandwidth by cross-validation is
denoted by Tcv. The standard test that does not take into account the
unconditional heteroscedasticity is denoted by Tst .

For high frequency time series it is reasonable to suppose that the
approximation (2.7) is satisfactory when the bandwidth is carefully cho-
sen. Nevertheless considering the above sophisticated procedure for
small n is questionable. Therefore we propose to apply the follow-
ing parametric bootstrap algorithm inspired from Francq and Zakoïan
(2010, p335).

1 Generate 𝜖
(b)
t ∼  (0,1), 1 + p ≤ t ≤ n, build the bootstrap errors

u(b)t = 𝜖
(b)
t ĥt , and the bootstrap series y(b)t using (2.1), but with 𝜔̂ and

𝜃(𝜔̂) (see (2.2) and (2.3)).
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