
The Journal of Systems and Software 123 (2017) 1–32

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A product-line model-driven engineering approach for generating

feature-based mobile applications

Muhammad Usman

∗, Muhammad Zohaib Iqbal , Muhammad Uzair Khan

Software Quality Engineering and Testing (QUEST) Laboratory, National University of Computer and Emerging Sciences, Islamabad, Pakistan

a r t i c l e i n f o

Article history:

Received 30 June 2016

Revised 31 August 2016

Accepted 28 September 2016

Available online 29 September 2016

Keywords:

Mobile applications

Software product-line engineering

Feature model

a b s t r a c t

A significant challenge faced by the mobile application industry is developing and maintaining multiple

native variants of mobile applications to support different mobile operating systems, devices and vary-

ing application functional requirements. The current industrial practice is to develop and maintain these

variants separately. Any potential change has to be applied across variants manually, which is neither effi-

cient nor scalable. We consider the problem of supporting multiple platforms as a ‘software product-line

engineering’ problem. The paper proposes a novel application of product-line model-driven engineering

to mobile application development and addresses the key challenges of feature-based native mobile ap-

plication variants for multiple platforms. Specifically, we deal with three types of variations in mobile

applications: variation due to operation systems and their versions, software and hardware capabilities

of mobile devices, and functionalities offered by the mobile application. We develop a tool MOPPET that

automates the proposed approach. Finally, the results of applying the approach on two industrial case

studies show that the proposed approach is applicable to industrial mobile applications and have poten-

tial to significantly reduce the development effort and time.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Mobile application development has recently emerged as one

of the most focused areas in the software industry (Dehlinger and

Dixon, October, 2011) . Exponential growth of mobile users, exten-

sive use of mobile devices, and the variety of mobile platforms has

resulted in significant increase of mobile application development

industry. According to recent statistics, there are around 4 mil-

lion registered mobile applications available for various platforms

(Statista 2015) with approximately 40 thousand mobile applica-

tions being added per month (Android Apps Submitted Per Month

2015) making the mobile application industry a multi-billion dollar

industry (Mobile Application Revenue Generation 2013) .

With the increase in the variety of mobile operating systems

and device features, a typical challenge faced by mobile application

industry is the requirement to support different mobile platforms.

The term mobile platform refers to both the software platform (i.e.,

operating system and software features such as contact and mes-

sage) and the hardware platform (i.e., the mobile device hardware

such as bluetooth and camera). As an example, consider an appli-

cation being developed may need to support various Android op-

∗ Corresponding author:.

E-mail addresses: m.usman@questlab.pk (M. Usman), zohaib.iqbal@nu.edu.pk

(M.Z. Iqbal), uzair.khan@nu.edu.pk (M.U. Khan).

erating systems’ versions (Google 2015) (such as, Ice-cream Sand-

wich, Kitkat, Lollipop, Marshmallow), their forks (Android fork such

as Cyanogen), and various iOS versions (Apple 2013) (such as, iOS

7, iOS 8, iOS X). The same application may also need to support the

mobile device hardware variations, i.e., various mobile devices sup-

port specific hardware features that are not available in other de-

vices. Some mobile devices provide support for LTE/4 G Networks,

Bluetooth, GPS, External storage, or Accelerometer and other de-

vices do not support these.

Another requirement for mobile applications is to support mul-

tiple functional requirement variations, i.e., different functionality

for different clients. For example in a banking application, some

clients may require support of scheduled wireless backups, while

other clients only require manually triggered wired backup sup-

port. Similarly, some clients are interested in payment via tradi-

tional credit card option only whereas others may want support

for more novel options, such as, bitcoins or Near Field Communi-

cations payment systems, such as Apply pay (Apply Pay 2016) and

Android pay (Android Pay 2016) in an e-store application.

A common mobile development industry practice to address

the above mentioned problems is to develop separate native vari-

ants of the same application for each mobile platform (Dehlinger

and Dixon, October, 2011 ; Joorabchi et al., October 2013 ; Top 100

Apps Availability for iOS 2016). This is a very resource heavy

task and the complexity of maintaining multiple variants increases

exponentially as a large number of application variants need to

http://dx.doi.org/10.1016/j.jss.2016.09.049

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.09.049
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.09.049&domain=pdf
mailto:m.usman@questlab.pk
mailto:zohaib.iqbal@nu.edu.pk
mailto:uzair.khan@nu.edu.pk
http://dx.doi.org/10.1016/j.jss.2016.09.049

2 M. Usman et al. / The Journal of Systems and Software 123 (2017) 1–32

be developed and maintained over time (Joorabchi et al., Octo-

ber 2013). Any potential change in the application requirements

has to be applied to all the different variants of the mobile ap-

plication manually. Similarly, any new functionality needs to be

added in all the variants separately. The graphical user interface

(GUI) for these applications is developed specifically for particular

mobile platforms. The GUI is typically developed using drag-and-

drop tools available for various operating systems and is tailored

specifically for optimal performance on each set of devices (Google

2016 ; Microsoft, 2013 ; Apple 2016) that are then used to generate

code corresponding to the GUI. Similarly, user-interface modeling

languages, such as, IFML (OMG 2016), UML i (Da Silva and Paton,

20 0 0), or model-based user-interface modeling techniques (Cimino

and Marcelloni, 2012 ; Botturi et al., 2013 ; Sabraoui et al., 2012)

can be used for developing GUI. The development of business logic

of native variants requires redundant effort and the approach of

developing these separately is neither scalable nor feasible. The

problem of maintaining multiple variants has also been highlighted

by a number of software engineers as one of the key challenges

in mobile application development (Dehlinger and Dixon, October,

2011 ; Joorabchi et al., October 2013 ; Wasserman, 2010).

An alternative to developing multiple native variants of a mo-

bile application is to either develop a web application or a cross-

platform hybrid application by using web-scripting languages (Raj

and Tolety, 2012). Web applications execute in a web browser,

whereas hybrid applications execute inside native containers of

mobile devices (Raj and Tolety, 2012). Web and hybrid mobile ap-

plications are generally considered low in performance and can-

not access mobile device hardware directly (Charland and Leroux,

2011). Web applications also require internet connectivity that can-

not be ensured at all times. Native applications, on the other hand,

are considered to be more stable and secure, better in terms of

performance, allow direct access to device hardware and also have

better look and feel. For example, Facebook application was first

launched as a hybrid application but due to the performance is-

sues and hardware non-accessibility, later on it was developed as

a native application for multiple platforms (Facebook Hybrid App

to Native App 2015). Some cross-platforms tools exist for devel-

opment of web and hybrid mobile application (Ohrt and Turau,

2012). The mobile applications developed using native applica-

tion development tools (Google, 2016; Microsoft, 2013, Apple 2016)

have superior look and feel as compared to the applications devel-

oped from the cross-platform development tools. Similarly, the de-

bugging support offered by the cross-platform tools is inferior to

the support provided by the native application development tools

(Ohrt and Turau, 2012; Dalmasso et al., 2013; Heitkötter et al.,

2012). Therefore, developing native applications is often the pre-

ferred choice if not the only choice.

Software product-line engineering (SPLE) is a well-accepted ap-

proach of developing a set of products that share a common set of

features (Pohl et al., 2005). The concept of SPLE has been adopted

from the broader product-line engineering that has been adopted

and applied in different domains to handle large number of prod-

uct variations, for example, in the automobile industry (Thiel and

Hein, 2002) and embedded systems (Polzer et al., 2009). SPLE uses

feature models that consist of a set of features and their variations

that are required by the family of products being developed (Lee

et al., 2002). The various products in the family (also referred to

as product variants) in a product-line are derived using the fea-

ture model (Webber and Gomaa, 2004). The problems of support-

ing mobile application variants that are highlighted above can be

positioned as an SPLE problem and the existing SPLE concepts can

be applied in this domain.

A widely accepted methodology for developing software sys-

tems that has successfully been applied in other domains is Model-

Driven Software Engineering (MDSE) (Gomaa, 2008; Larman, 2004;

Iqbal et al., 2015). In MDSE, models are considered as the key

software development artifact (Brambilla et al., 2012) and Unified

Modeling Language (UML) (OMG 2013a) is commonly used for de-

veloping software systems. MDSE has a high potential for use in

developing mobile applications because it allows platform inde-

pendent modeling, which can later on be transformed to multiple

mobile platforms.

In our work, we address the challenges faced by the mobile ap-

plication industry (highlighted earlier) by proposing a ‘product-line

model-driven engineering approach’ to support automated genera-

tion of mobile application variants of multiple platforms. We refer

to these variants as feature-based variants and our approach sup-

ports three variations required by mobile applications industry: (i)

variations in application due to mobile operating systems and their

versions, (ii) variations due to software and hardware capabilities

of the mobile devices, and (iii) variations based on the functional-

ities offered by the mobile application.

The problem of supporting multiple mobile application variants

(hardware, software, and functional) is well-acknowledged in lit-

erature and is a recurring problem in industry. This is also true

for our industrial partner, Invotyx (Invotyx 2014), which is devel-

oping native mobile applications for various mobile platforms with

different f eatures and the developers are currently maintaining a

number of variants for each application, as per the prevalent in-

dustrial practice. Invotyx is interested in an efficient approach for

developing and maintaining the various variants of the applications

being developed at the company. Our proposed approach provides

an automated solution and is applied on two case studies provided

by our industrial partner, Scramble and Instalapse .

As part of the solution, for SPLE we provide a generic mo-

bile application product-line feature model (FM G) that captures

the mobile domain specific concepts (for example, Android v5.1,

iOS X, bluetooth, WIFI, contact, and message). The FM G can be

used by the application designer to develop an application spe-

cific feature model (FM A). The FM A contains the operating system-

related features, software-related features, hardware-related fea-

tures, and application-specific functional requirement-related fea-

tures and combine these as a feature model specific for the ap-

plication product-line under development. The application specific

feature model (FM A) can then be used to generate a mobile ap-

plication product-line modeling profile specific for the application

product-line. The modeling profile allows the application designer

to model mobile domain specific concepts during mobile appli-

cation modeling. Considering mobile applications typically have

short time to market and require quick delivery and deployment

(Joorabchi et al., October 2013), we select a minimal but sufficient

subset of UML that includes UML use-case diagram for require-

ments gathering, class diagram for structural modeling, and state

machine diagram for behavioral modeling of the mobile applica-

tion. To support the proposed approach, we develop an applica-

tion generation tool MOPPET to automate our product-line model-

driven engineering approach for mobile applications. The proposed

approach is applied on two industrial case studies developed by

our industrial partner.

The rest of the paper is organized as follows: Section 2 high-

lights the industrial context and describes the case studies. Section

3 overviews the related work. Section 4 presents the details of

the proposed approach briefly. Section 5 provides details about the

proposed product-line engineering approach while Section 6 dis-

cusses the proposed model-driven engineering approach. Section

7 describes the feature-based mobile application variants genera-

tion while Section 8 presents the developed MOPPET tool to im-

plements the proposed approach. Section 9 validates the proposed

approach through industrial case studies and also highlights the

limitations, threats to validity, and open questions of the proposed

approach. Finally, Section 10 concludes the paper.

https://isiarticles.com/article/90573

