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• An operational semantics of a queue language for streaming computations.
• An operational semantics of algorithmic skeletons using this queue language.
• Derive cost equations for algorithmic skeletons from the operational semantics.
• Cost equations for algorithmic skeletons are combined with sized types.
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a b s t r a c t

Structured parallelism using nested algorithmic skeletons can greatly ease the task of writing parallel
software, since common, but hard-to-debug, problems such as race conditions are eliminated by design.
However, choosing the best combination of algorithmic skeletons to yield good parallel speedups for
a specific program on a specific parallel architecture is still a difficult problem. This paper uses the
unifying notion of hylomorphisms, a general recursion pattern, to make it possible to reason about both
the functional correctness properties and the extra-functional timing properties of structured parallel
programs. We have previously used hylomorphisms to provide a denotational semantics for skeletons,
and proved that a given parallel structure for a program satisfies functional correctness. This paper
expands on this theme, providing a simple operational semantics for algorithmic skeletons and a cost
semantics that can be automatically derived from that operational semantics. We prove that both
semantics are sound with respect to our previously defined denotational semantics. This means that we
cannowautomatically and statically choose a provably optimal parallel structure for a givenprogramwith
respect to a cost model for a (class of) parallel architecture. By deriving an automatic amortised analysis
from our cost model, we can also accurately predict parallel runtimes and speedups.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In previous work [1], we have defined a type-basedmechanism
for reasoning about the safe introduction of parallelism using a
structured parallel approach. Our approach allows us to extract
parallel program structure as a type. Given a suitable model of a
program’s execution cost (e.g. in terms of its time performance),
we can reason formally about performance improvements for al-
ternative parallelisations, and so select a provably optimal parallel
implementation. In this paper, we show how to derive appropriate
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cost models formally from the parallel structure of a program, us-
ing a new queue-based operational semantics (Fig. 1). This gives a
completely formal system for reasoning about the performance of
structured parallel programs. We combine related work on algo-
rithmic skeletons and recursion schemes. Algorithmic skeletons [2]
are parametric implementations of common patterns of parallel
programming. Using a pattern/skeleton approach, the programmer
can design and implement a parallel program in a top-down man-
ner. For example, the programmer could first identify the parallel
patterns that occur in a particular piece of software, then select
the patterns that potentially lead to the best speedups, and finally
select a suitable implementation for those patterns, as a composi-
tion of one or more algorithmic skeletons. This composition then
exposes the parallel structure of the implementation. Developing
an equational theory for easily, and automatically, changing the
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Fig. 1. Deriving cost equations from operational semantics.

parallel structure of a program has been the subject of research
in the skeletons community for the last two decades [3–6]. Over
a similar timeframe, in the functional programming community,
a structured form of recursion has been explored, in the form of
patterns of recursion, or recursion schemes [7]. Research on this topic
has brought many improvements to equational reasoning in func-
tional languages. One example is the application of the laws and
properties of recursion schemes to the well-known deforestation
optimisation [8,9].

There is an obvious connection between algorithmic skele-
tons and recursion schemes: algorithmic skeletons are essen-
tially higher order functions that implement some common pat-
tern of parallelism. This has already been exploited a number of
times [3,10–12]. In [1], we expand on this connection, using the
fact that a large number of recursion patterns can be represented
as instances of a more general pattern, a hylomorphism. The ba-
sic idea is to provide a single unifying framework for reasoning
both about program transformations and about parallel execution
times. This unifying framework provides a type-level abstraction of
the program structure, given as a combination of the hylomorphisms
and algorithmic skeletons that are used to implement a particular
program. This allows us to define a type-based mechanism for
reasoning about the safe introduction of parallelism: specific com-
binations of hylomorphisms can be ‘‘replaced’’ by specific combi-
nations of algorithmic skeletons. We provide strong static guaran-
tees that the resulting program will be functionally equivalent to
the original one. Given a suitable model for the cost of a parallel
implementation (e.g. in terms of execution time), we can then use
this type-based approach to reason formally about performance
improvements for alternative parallelisations, and so to select a
provably optimal parallel implementation.

1.1. Novel contributions

In this paper, we show how to formally derive appropriate
cost models from the parallel structure of a program, using a new
queue-based operational semantics. This gives a completely formal
system for reasoning about the performance of structured parallel
programs. The main novel contributions of the paper are:

• We define the operational semantics of a queue language
that is powerful enough to describe the operational seman-
tics of a number of algorithmic skeletons, and small and
restrictive enough to facilitate reasoning about correctness
and execution times (Section 4).

• We define the operational semantics of a number of key
algorithmic skeletons using this queue language (Section 5).

• We derive a set of cost equations for a number of algorithmic
skeletons from the operational semantics in a systematic
way. We combine these cost equations with the notion of
sized types, and sketch how this process can be automated
(Section 6).

1.2. Motivating example

We illustrate our approach using the image merge example
from [1]. The purpose of the imgMerge function is to mark and
then merge pairs of images.

imgMerge : List(Img × Img) → List Img
imgMerge = map (merge ◦ mark)

This has many possible, semantically equivalent, parallel imple-
mentations.

imgMerge1 = farm n (fun (merge ◦ mark))
imgMerge2 = farm m (fun mark) ∥ farm n (fun merge)
imgMerge3 = farm n (fun mark) ∥ fun merge
. . .

here, farm n is a task farm skeleton that replicates its argument n
times, fun captures primitive (sequential) functions, ◦ is the normal
function composition, and ∥ is a parallel pipeline, i.e. the parallel
composition of two skeletons. The structure of each parallel im-
plementation can be lifted into an appropriate type signature, so
that

imgMerge1 : List(Img × Img)
farmn(fun (merge◦mark))
−−−−−−−−−−−−−→ List Img

By combiningwell-known properties of algorithmic skeletons [13]
and hylomorphisms [7], we can define a convertibility relation that
relates each of these types for imgMerge to any of the other types.
Moreover, this same relation also allows the underlying program
to be automatically rewritten so that it matches the new type. We
can thus automatically select any valid parallel implementation
of imgMerge simply by changing the type, and without changing
its definition. Finally, if we have a cost model for these types, we
can now reason about costs, and automatically select the provably
best parallel implementation for imgMerge, or, indeed, for any
appropriately structured parallel program.

2. Algorithmic skeletons

We use algorithmic skeletons [2] to represent structured paral-
lel patterns. Skeletons are parameterised templates (higher-order
functions) that capture the structure of a parallel program. That is,
they implement a specific parallel pattern, that can be instantiated
to produce a specific parallel algorithm. In this paper, as in our
earlier work [1,14], we use a ‘‘pluggable’’ approach, where all
skeletons are streaming entities (that is, they operate overmultiple
inputs and producemultiple results). Each skeleton takes its inputs
from an input queue, and produces a result queue. This approach
allows skeletons to be easily nested or linked together into more
complex structures, whose sub-components are connected via in-
termediate queues. In this paper, we will consider four common
parallel skeletons, task farms, parallel pipelines, feedbacks, and par-
allel divide-and-conquer, plus one basic building block, structured
functions.
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