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a  b  s  t  r  a  c  t

Due  to increasing  habitat  fragmentation  and concern  about  its ecological  effects,  there  has  been  an
upsurge  in  the  use  of landscape  connectivity  estimates  in  conservation  planning.  Measuring  connectivity
is  challenging,  resulting  in  a limited  understanding  of  the  efficacy  of  connectivity  estimation  techniques
and  the conditions  under  which  they  perform  best.  We evaluated  the  performance  of  four  commonly
used  connectivity  metrics  – Euclidean  distance;  least-cost  paths  (LCP)  length  and  cost;  and  circuit  the-
ory’s  resistance  distance  – over a variety  of simulated  landscapes.  We  developed  an  agent-based  model
simulating  the  dispersal  of  individuals  with  different  behavioural  traits  across  landscapes  varying  in
their  spatial  structure.  The  outcomes  of  multiple  dispersal  attempts  were  used  to  obtain  ‘true’  con-
nectivity.  These  ‘true’  connectivity  measures  were  then  compared  to  estimates  generated  using the
connectivity  metrics,  employing  the simulated  landscapes  as cost-surfaces.  The four  metrics  differed
in  the strength  of  their  correlation  with  true  connectivity;  resistance  distance  showed  the strongest
correlation,  closely  followed  by LCP  cost,  with  Euclidean  distance  having  the  weakest.  Landscape  struc-
ture and  species  behavioural  attributes  only  weakly  predicted  the  performance  of  resistance  distance,
LCP  cost  and  length  estimates,  with  none  predicting  Euclidean  distance’s  efficacy.  Our  results  indicate
that  resistance  distance  and  LCP  cost  produce  the  most accurate  connectivity  estimates,  although  their
absolute performance  under  different  conditions  is  difficult  to predict.  We emphasise  the importance  of
testing  connectivity  estimates  against  patterns  derived  from  independent  data,  such  as  those  acquired
from  tracking  studies.  Our  findings  should  help  to  inform  a more  refined  implementation  of  connectivity
metrics  in  conservation  management.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

As habitat fragmentation and land-use intensification con-
tinue, maintaining the ability for individuals to move among
habitat patches and populations has become a major goal of
many conservation plans (Fischer and Lindenmayer, 2007). Accord-
ingly, measurements of ‘landscape connectivity’ often play a large
role in land-use management schemes (Moilanen and Hanski,
2001; Moilanen and Nieminen, 2002). Landscape connectivity is
a measure of the extent to which landscape structures and ele-
ments facilitate or impede movements among resources or habitat

∗ Corresponding author at: Georg-August University of Göttingen, Department of
Ecosystem Modelling, Büsgenweg 4, 37077,Göttingen, Germany.

E-mail address: simpkinscraig063@gmail.com (C.E. Simpkins).

patches (Taylor et al., 1993; Tischendorf and Fahrig, 2000). How-
ever, direct measures of landscape connectivity are difficult and
costly to obtain (Kindlmann and Burel, 2008), and so most quan-
tifications of connectivity are indirect.

Early efforts to estimate landscape connectivity used Euclidean
distances between habitat patches (e.g. Green, 1994; Metzger
and Décamps, 1997). However, because the dispersal capabilities
of organisms are affected by landscape composition and con-
figuration, and so vary across space, Euclidean distances often
provide poor estimates of connectivity (Emel and Storfer, 2015;
Vuilleumier and Fontanillas, 2007). Subsequently, connectivity has
been estimated using various models which are underpinned by
cost-surfaces. Cost-surfaces are raster depictions of landscapes in
which the difficulty for individuals of some species of interest to
traverse different features in the landscape is represented by a
cost value (Douglas, 1994; Etherington, 2016). Connectivity tech-

https://doi.org/10.1016/j.ecolmodel.2017.11.001
0304-3800/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ecolmodel.2017.11.001
https://doi.org/10.1016/j.ecolmodel.2017.11.001
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:simpkinscraig063@gmail.com
https://doi.org/10.1016/j.ecolmodel.2017.11.001


Please cite this article in press as: Simpkins, C.E., et al., Assessing the performance of common landscape connectivity metrics using a
virtual ecologist approach. Ecol. Model. (2017), https://doi.org/10.1016/j.ecolmodel.2017.11.001

ARTICLE IN PRESSG Model
ECOMOD-8297; No. of Pages 11

2 C.E. Simpkins et al. / Ecological Modelling xxx (2017) xxx–xxx

niques using cost-surfaces fall along a continuum of an individuals
assumed familiarity with a landscape (Rayfield et al., 2011). At
one extreme is least-cost path (LCP) modelling, which calculates
a single route of maximum efficiency (i.e., ‘lowest cost’) between
two points, assuming that an individual has complete and perfect
knowledge of the composition and configuration of the landscape
(Adriaensen et al., 2003; Douglas, 1994; Etherington, 2016). At the
other extreme is circuit-theory, which assumes individuals move
randomly through landscapes of which they have no prior knowl-
edge, producing multiple pathways depicting the concentration of
individuals’ flow between two points (McRae, 2006; McRae and
Beier, 2007).

Given the proliferation of cost-surface derived connectivity
models a number of studies have explored the factors that influ-
ence each model’s performance. Most of these studies examine the
sensitivity of a single model (Rayfield et al., 2010), or compare the
sensitivity of multiple models (Koen et al., 2012), to changes in
cost-surface configuration (i.e. spatial structure) and/or composi-
tion (i.e. cost values). While such studies explain how connectivity
models may  react to changes in cost-surfaces they do not indicate
how well each model captures the true connectivity of the underly-
ing landscape. Recent studies have used tracking and genetic data
to quantify the ability of connectivity models to capture this true
landscape connectivity (McClure et al., 2016; Poor et al., 2012; Ruiz-
González et al., 2014; Sawyer et al., 2011). The results of these
studies have been mixed with regards to which model best rep-
resents landscape connectivity. However, these results highlight
that the performance of connectivity models is context-dependent;
for example, McClure et al. (2016) found that LCP was  the best
model for predicting the movements of migrating individuals but
that circuit-theory was best for naïvely dispersing individuals. This
context-dependence means that elucidating universal trends in
model performance requires a large number of different contexts
to be studied. However, due to the costs involved studies such as
those mentioned above are rare and are often conducted only on a
small number of species in a small number of landscapes, limiting
the generalisability of their results (Spear et al., 2010).

Given the limited generalisability of current empirical studies,
we adopted a ‘virtual ecologist’ approach in which we assessed the
performance of multiple connectivity models (and their associated
metrics) over a range of conditions via simulation (Zurell et al.,
2010). We  developed a spatially explicit agent-based model (ABM)
that represented individuals dispersing through landscapes and
from this we quantified simulated ‘true’ landscape connectivity.
We then assessed model performance by comparing each connec-
tivity model’s estimates of landscape connectivity to the simulated
‘true’ connectivity. Using this approach we aimed to: 1) determine
the predictive performance of a suite of widely used connectivity
estimation techniques; 2) examine to what extent predictive per-
formance was dependent on landscape structure; and 3) explore
how sensitive predictive performance was to organism behavioural
traits. By using the ‘virtual ecologist’ approach to address these
aims (Zurell et al., 2010), we were able to analyse each connectivity
model over a large range of conditions so producing generalisable
results.

2. Materials and methods

We  used an ABM to simulate ‘true’ landscape connectivity values
against which we evaluated the relative ability of four connectiv-
ity metrics (Euclidean distance; least-cost paths length; least-cost
paths accumulated cost; and resistance distance) generated using
three connectivity models (Euclidean distance; least-cost paths
modelling; and circuit-theory) to accurately represent landscape
connectivity. We  ran our simulation over landscapes with a wide

range of compositions and configurations using simulated animal
movements with varying behavioural characteristics. In this sec-
tion, we first report on our ABM design (Section 2.1), then on the
calculation of connectivity metrics (Section 2.2), and finally on the
experimental design of our study (Section 2.3).

2.1. Agent-based model design

Our ABM used the open-source programming framework NetL-
ogo v.5.1.0 (Wilensky, 1999) in conjunction with R v.3.2.3 (R Core
Team, 2015), including the RNetlogo library v 1.4 (Thiele et al.,
2012), and Python v.2.7.11 languages for the development of the
connectivity models and assessment of their related metrics. The
ABM description below follows the overview, design, concepts and
details (ODD) protocol (Grimm et al., 2010). In Sections 2.1.1–2.1.3
we describe the surface level procedures of the model. The detailed
formulaic descriptions of the sub-models underlying these proce-
dures are given in Section 2.1.4.

2.1.1. Overview
2.1.1.1. Purpose. The purpose of our ABM was to generate ‘true’
connectivity values for a landscape, by virtue of the dispersal of
naïve individuals from the centre of the landscape in search of
habitat patches in which to settle; this represents, for example,
the movements that occur after a translocation event. Our ABM
did not, nor did it attempt to, perfectly emulate the observed
movements of a specific taxa, but rather we  sought to provide a
simple representation of movement dynamics through spatially
heterogeneous environments. Dispersal between habitat patches
was selected as a movement type as it can be simulated with the
fewest explicit assumptions, as opposed to movements such as
migration that assume some degree of familiarity with a movement
route. Additionally, because single dispersal events typically occur
over relatively short time periods we  did not represent energetic
requirements. Mortality was  not represented in the ABM because
the data used to inform connectivity estimates are usually acquired
from the individuals that survive a dispersal event; the agents in
our model may  be viewed as those surviving individuals.

2.1.1.2. Entities, state variables, and scales. The spatial domain of
the ABM was a 100 × 100 cell regular lattice (grid). Each cell in
the lattice was classified into a landscape type and assigned a cor-
responding cost value that represented the difficulty of an agent
traversing the cell (see “Landscape generation procedure”). As the
model depicts a generic species with simplified movements that
may occur over multiple scales, no explicit spatial scale was defined.
While time-steps were not defined explicitly, each represented the
period required for an agent to travel a distance equivalent to mov-
ing from the centre of one cell to the centre of one of its neighbours.

Each landscape had eight habitat patches arranged concentri-
cally around the landscape’s midpoint, with orthogonal patches
being slightly closer to the central cell than diagonal patches (Fig. 1).
Simulation trials showed that using 16 or 32 patches did not result
in qualitatively different outcomes (Supplementary Materials). A
uniformly spaced concentric ring of habitat patches was selected
as this minimised shadowing (i.e. habitat patches acting as barriers
to habitat patches behind them), which frequently occurred when
habitat patches were randomly located. Habitat patches were cir-
cular with a diameter of 10 cells and a cost value of one. The total
number of agents reaching any part of each individual habitat patch
was recorded.

The ABM contained one type of mobile agent. Agents were
initially located at the centre of the landscape, facing a random
direction. Each agent moved through the landscape until they
reached one of the eight habitat patches, or left the simulation land-
scape (see “move procedure”). Model agents were characterised by
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