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a b s t r a c t

Online data acquisition, data assimilation and integrated hydrological modelling have become more and
more important in hydrological science. In this study, we explore cloud computing for integrating field
data acquisition and stochastic, physically-based hydrological modelling in a data assimilation and
optimisation framework as a service to water resources management. For this purpose, we developed an
ensemble Kalman filter-based data assimilation system for the fully-coupled, physically-based hydro-
logical model HydroGeoSphere, which is able to run in a cloud computing environment. A synthetic data
assimilation experiment based on the widely used tilted V-catchment problem showed that the
computational overhead for the application of the data assimilation platform in a cloud computing
environment is minimal, which makes it well-suited for practical water management problems. Ad-
vantages of the cloud-based implementation comprise the independence from computational infra-
structure and the straightforward integration of cloud-based observation databases with the modelling
and data assimilation platform.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrological and hydrogeological systems are highly heteroge-
neous, and the temporal evolution of their spatially variable states
is driven by dynamic forcing functions. Deterministic numerical
models are an important tool for understanding and managing
such systems. Such models can support the water management
decisionmaking process with predictions of the temporal evolution
and the spatial distribution of target state variables. Groundwater
management often relies on simulations with distributed,
physically-based hydrological models, e.g., for well field operations
adjacent to a river. The available numerical models have greatly

improved in recent years. There are, for example, ongoing efforts
towards a better description of the dynamic feedbacks between
subsurface and surface water processes (Kollet and Maxwell, 2006;
Brunner and Simmons, 2012). One of the advantages of such
physically-based, fully-coupled (or integrated) surface-subsurface
models is that the location of surface water features, such as the
position of rivers, no longer needs to be predefined through
boundary conditions. They are therefore very well-suited for
simulating changing surface water conditions such as floods or
droughts.

Deterministic models need to be calibrated based on existing
observations. However, there is a growing awareness of the un-
certainty related to such deterministic model predictions (Liu et al.,
2012). The uncertainties stem from the limited knowledge about
the spatial distribution and magnitude of important model pa-
rameters, such as hydraulic conductivity or porosity (Chen and
Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008). Also, the
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high spatio-temporal variability of boundary conditions and input
variables, such as precipitation, can highly affect the quality of
model predictions. Moreover, the limited availability of spatial and
temporal field data limits the reliability of the calibration process.
Finally, the computational requirements of many numerical simu-
lators, especially fully-coupled, physically-based models, exclude in
most cases a solid uncertainty analysis. These uncertainties can be
substantial and they often undermine the credibility of hydrologi-
cal and hydrogeological models, especially once it comes to pre-
dicting highly dynamic systems.

However, a range of technological and mathematical advances
allows overcoming some of the previous limitations. Above all,
these advances are related to three key developments: data
acquisition techniques, the increasing computational capacities of
hydrological models, as well as the integration of measurement
data in the modelling process.

Firstly, the acquisition of field data has been greatly facilitated.
Traditionally, hydrological field measurements such as piezometer
levels, precipitation, soil moisture, discharge or water quality in-
dicators, were acquired either manually in the field at predefined
measurement intervals or recorded with data loggers, which have
to be read out on a weekly or monthly basis. Ongoing advances in
sensor technology and telemetry make it now possible to obtain
hydrological data shortly after their acquisition in the field, even for
very remote field sites. Wireless sensor networks (WSNs) are
increasingly applied in environmental studies, e.g., in the context of
soil moisture monitoring (Robinson et al., 2008; Ritsema et al.,
2009; Bogena et al., 2010) or surface water monitoring (Li et al.,
2011), studies on wetland dynamics (Watras et al., 2014) or the
acquisition of solute transport data for modelling purposes (Loden
et al., 2009; Barnhart et al., 2010). SuchWSNs consist of distributed
sensors that transmit the measured data through wireless in-built
radio modules to a set of router units that manage the communi-
cation within the network (Bogena et al., 2010). As a result, the
measured data can be accessed by the user on a permanent storage
device in near real-time. This can be of great advantage for water
management purposes, especially when a system needs to be
controlled and regulated continuously (such as pumps for river
bank filtration), and the hydraulic forcings are highly transient
(such as the water level in a river).

Secondly, the computational efficiency of hydrological models is
continuously increasing. Recent advances in numerical mathe-
matics lead to the development of more efficient solvers and pre-
conditioning techniques (Herbst et al., 2008; Maxwell, 2013).
Parallelisation of model codes (Ashby and Falgout, 1996; Vereecken
et al., 1996; Jones and Woodward, 2001; Mills et al., 2007) makes it
possible to solve hydrogeological problems with a high spatio-
temporal resolution and on large scales. These advancements in
computational efficiency also facilitated the usage of more so-
phisticated physical process descriptions in the modelling process.
For example, state-of-the-art hydrological models nowalso provide
a full 3D solution of the Richards equation, and a physically
consistent coupling between surface and subsurface flow equations
(Kollet and Maxwell, 2006; Brunner and Simmons, 2012).

Finally, the combination of sequential data assimilation tech-
niques like the ensemble Kalman filter (EnKF) (Evensen, 1994;
Burgers et al., 1998) with hydrogeological models now allows
integrating real-time data into the modelling process. These
methods can be used to effectively merge uncertain model pre-
dictions with uncertain observation data in a Bayesian sense. The
uncertainty of model predictions is approximated through the
forward simulation of an ensemble of model realisations, where
each realisation can have a different combination of initial condi-
tions, model forcings and model parameters. The uncertain model
predictions are then sequentially updated with measurement data.

In this updating step, the uncertainties in the model predictions
and the uncertainties of the observations are optimally weighted
and the model predictions are effectively adjusted towards the
measured data. Besides the correction of state variables, it is also
possible to use observation data to update model parameters
jointly with the model states (Hendricks Franssen and Kinzelbach,
2008), which makes these methods very effective calibration tools.
This methodology has already been applied to a variety of hydro-
geological problems including assimilation of hydraulic head data
(Chen and Zhang, 2006; Nowak, 2009), transport problems (Liu
et al., 2008; Li et al., 2012), surface water-groundwater in-
teractions (Kurtz et al., 2014; Rasmussen et al., 2015; Tang et al.,
2015), assimilation of discharge data (Camporese et al., 2009),
operational flood forecasting (Seo et al., 2009; Weerts et al., 2010)
and integrated hydrological modelling (Shi et al., 2015; Rasmussen
et al., 2015; Kurtz et al., 2016). An application in a hydrogeological
setting was given by Hendricks Franssen et al. (2011) for ground-
water management of the upper Limmat aquifer in Zurich
(Switzerland). In this case, a groundwater model is run on a daily
basis to support management decisions on groundwater abstrac-
tion, and the EnKF methodology is used to continuously correct the
model predictions and model parameters with available hydraulic
head data. These corrected model predictions are then used as
input for the real-time optimisation of groundwater management
activities (Bauser et al., 2010, 2012). In the particular case of the
Limmat aquifer, the updated hydraulic head distribution from the
groundwater model is used to optimally control the groundwater
abstraction from a well field according to predefined management
goals, which include the total abstraction rate and the maintenance
of certain hydraulic conditions to prevent the leakage of contami-
nants to the well field from a close-by disposal site. Other appli-
cations of real-time optimisation of groundwater resources include
the energy efficient operation of well fields (Hansen et al., 2012;
Bauer-Gottwein et al., 2016) or the accounting for the thermal
regime within an aquifer (Marti, 2014). In Schwanenberg et al.
(2011), data assimilation methods are used in conjunction with
optimal control algorithms for a large-scale river network.

Such methods, especially in combination with fully-coupled,
physically-based hydrological models, are usually associated with a
high computational burden due to the need to perform hundreds of
model simulations in a Monte Carlo framework. This requires the
availability of a dedicated computer infrastructure, which is not
readily available for every end-user due to the high personal and
financial effort for acquiring and maintaining such systems. This
can, in part, be overcome by cloud-based services that provide
computational resources on demand, which is seen as an upcoming
solution for different environmental applications (Granell et al.,
2016). Cloud computing has already been suggested as a future
platform for hydrological modelling, model calibration and uncer-
tainty analysis (Hunt et al., 2010; Bürger et al., 2012; Ercan et al.,
2014; Zhang et al., 2016) and as a promising tool in the context of
decision making in water management (Sun, 2013). Mure-Ravaud
et al. (2016) recently also presented an example of a flood fore-
casting systemwhich is hosted on a cloud server. Such cloud-based
solutions are flexible with respect to the choice of the computing
environment (operating system, CPU, main memory, etc.), and can
thus host a variety of simulation platforms with different compu-
tational requirements. Furthermore, such services are paid ac-
cording to the actually consumed computation time. Therefore, the
costs to the end-user are effectively reduced by avoiding the
financial overhead that is required for installing andmaintaining an
own in-house computer system.

This study presents a fully-operational architecture for a cloud-
based stochastic real-time prediction and management system in
the context of groundwater management. The proposed system
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