A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory

Qiu Lia,b, MingChu Lic,e, Lin Lvc, Cheng Guoc,e, Kun Luc

aZhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang Jiangsu 212003, P.R. China
bSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
cSchool of Software Technology, Dalian University of Technology, Dalian, China

Abstract

Infectious diseases have proven to be remarkably resilient foes of human health and so the prevention and control of infectious diseases have been attracting the attention of all countries over the world. Vaccination is an effective way to prevent the spread of infectious diseases. However, vaccination is a long-standing social dilemma due to the vaccine’s risk by itself and the spread of infectious diseases in the population depends on not only the pathogen itself, but also the impact of social network structures. In this paper, we propose a new prediction model of infectious diseases with new vaccination strategies based on network structures and dynamic replicator. In our model, we consider not only the subsidies of vaccine failure but also the incentive strategy for medical treatment to promote individuals to take the initiative to vaccinate. At the same time, in decision-making phase, we use weighted average benefits of all participants to update their strategies due to individual difference. Simulation experiments show that the our proposed model is much effective and better than other existing models. We also use Jacobian matrix to prove the stability of dynamic equilibrium for our proposed model.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Infectious diseases caused considerable damage to human societies. Many of these diseases, such as measles, pertussis, influenza, and many others, have been burdening us for centuries, while new infectious diseases, such as Ebola, Zika virus, and SARS, continue to emerge from animal populations and make the jump to human populations, or spreading to new human populations due to climate change or other anthropogenic disturbances. To help reduce their impact, a lot of mathematical models and methods of disease transmission have been studied to understand disease dynamics and inform prevention strategies [1]. Preemptive vaccination is one of the most important preventive measures of modern times for preventing epidemics of infectious diseases, as well as reducing morbidity and mortality [1–3]. As the vaccination level increases and herd immunity is achieved, no one can be infected. Thus, these vaccinated individuals can help the unvaccinated ones escape infection. So, the unvaccinated people avoid the side effects from vaccination and also save the cost of vaccination. As a consequence, many people decide to no longer vaccinate, and thus to effectively free-ride on the efforts of others who still vaccinate their offspring [1,4]. Thus, under voluntary vaccination policy, people may consider various factors (such as the cost of vaccination, self-interest, vaccine risk by itself, and the vaccination behaviors of other individuals [5–7] not to choose vaccination. With such behavior on the uprise, the herd immunity gets lost and the probability for the outbreak of diseases increases significantly. On the other hand, compulsory vaccination may result in the infringement of civil rights [8]. Thus it is very hard to protect populations from epidemics [9,10]. Another important and difficult factor in eradicating vaccine-preventable disease is an inherent paradox in epidemiology [1,4,11]. Therefore, to measure effective public health for preventing epidemics of infectious diseases, we need to study these interrelations among vaccination coverage, prevalence of disease and vaccination behaviors, and develop dynamic and quantitative models for predicting the consequences of these complex interrelations. In this paper, we will try to do some exploration about this aspect.

In order to study the vaccination dilemma, game theoretic frameworks have been applied to the population in which each individual tries to maximize her own payoff. Game theoretical models of interactions between vaccinating behavior and disease dynamics typically define strategies (such as vaccinator or
Thus, the individual i updates his strategy with the probability $p = \min\{1, \frac{\tau}{\tau_1}\}$, where s is her opponent's payoff and τ is the weighted average payoff by averaging payoffs of whom adopt the same strategy as her opponent. But the individual i's strategy is not based on the payoff of a certain opponent among her neighbors. In the following, we will analyze the effectiveness of this new strategy-updating rule on vaccination coverage and on the final proportion of the population that becomes infected.

Besides, note that previous work usually assumes perfect vaccination. That is, the vaccinated individuals gain perfect immunity against the disease [24]. The effectiveness of vaccination, however, is not 100%, such as measles [25], malaria [26] and HIV [27]. Even though the actual vaccination is perfect, the perceived effectiveness can be not perfect. In fact, it has been shown that the perceived effectiveness is often lower than the actual one in [28]. Therefore, imperfect vaccination [29] is taken into account in our proposed model. In our model, we consider the vaccination failure, if an individual is infected by the disease though he get vaccinated, then he will get subsidies in the treatment.

The main contributions of this paper are as follows:

(1) The spread of infectious diseases in the population depends not only on the pathogen itself but also the impact of social network structures. Different network structures have a great impact on the spread of infectious diseases and so need to be considered in the prediction model. Thus we propose a new prediction model of infectious disease with new vaccination strategy based on network structures and dynamic replicator.

(2) We propose a new incentive strategy for vaccination failure and treatment. In our model, we consider not only the subsidies of vaccine failure but also the incentive strategy for medical treatment to promote individuals to take the initiative to vaccinate.

(3) In decision-making phase, the traditional approach is to randomly select one individual from her neighbors, compare the two payoffs, and then update their strategy. In this paper, as we said before, we propose a new mechanism that we randomly choose an individual from her neighbors and get her strategy, calculate the weighted average value of the benefits of all participants who choose this strategy by considering the individual's difference in heterogeneous network, last compare the two payoffs.

(4) We use mathematical analysis and Jacobian matrix to show the stability of dynamic equilibrium for our model.

(5) Our experimental results show that our proposed model is effective and is better than other existing models (such as MED [11] and FTA [23]).

The remainder of this paper is organized as follows. In Section 2, we describe the details of our proposed framework, which combines the epidemiological dynamics by considering the network structure and a decision-making process with regard to the vaccination (vaccination game), as well as the method of our computational simulation. On this basis, in Section 4, we show the results of evaluation experiments and the analyses for these results. Conclusions and suggestions for future research are discussed in Section 5.

2. Our models and methods

Our model contains two stages (see Fig. 1). The first stage is vaccination campaign for decision making. Each individual in the population (a node on social networks) makes her decision whether to get vaccinated based on her strategy.

The second stage corresponds to an epidemic season. For describing epidemiologic dynamics on a structured population, our
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات