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h i g h l i g h t s

• Arbitrage can be characterized by a measure of curvature.
• The Fourier transform can be used to show how a pdf on the amplitude function of wave numbers (they now depend on ε) yields a pdf.
• We can source arbitrage based risk neutral probabilities from this pdf.
• Via the route of the Fourier transform, we can also introduce some quantum-like ideas in economics.
• Superposed values of a good could be seen to be equal to an unobserved, agent based price.
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a b s t r a c t

Arbitrage is a key concept in the theory of asset pricing and it plays a crucial role in financial decision
making. The concept of the curvature of so-called ‘fibre bundles’ can be used to define arbitrage. The
concept of ‘action’ can play an important role in the definition of arbitrage. In this paper, we connect the
probabilities emerging from a (non) zero linear action with so-called risk neutral probabilities. The paper
also shows how arbitrage/non arbitrage can be well defined within a quantum-like paradigm. We also
discuss briefly the behavioural dimension of arbitrage.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The concept of ‘arbitrage’ is of paramount importance in the
theory of asset pricing. It also plays an important role in be-
havioural economics, since the real (or even imagined) presence
of arbitrage possibilities has a powerful influence on the psychol-
ogy of agents of the financial market.1 In essence an arbitrage op-
portunity implies that a positive financial return can be realized,
which is in excess of the risk free rate of interest,2 on taking a trad-
ing position in an assetwhich entails no financial risk. Disregarding
the cost which may need to be incurred for finding such arbitrage
opportunities, one could in effect claim that an arbitrage opportu-
nity is akin to obtaining what is often quoted in common parlance
as a ‘free lunch’. It is intuitive that pricing financial assets under
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1 See Shleifer and Vishny (1997) and references on various psychological
distortions in the behaviour of arbitrageurs and their clients and global financial
consequences of such psychological particularities.
2 The risk free rate of return is the return which is deemed to exist on financial

assets which have no financial risk.

the assumption there does not exist arbitrage, rationalizes the ex-
istence of so-called ‘benchmark’ asset prices. As Øksendal (2004)
indicates ‘‘It is not possible tomake a sensiblemathematical theory
for a market with arbitrage’’ (p. 26). As an example Black–Scholes
option pricing theory,which commands amarket of trillions of dol-
lars, rests on the assumption of no-arbitrage.3

The conditions for no-arbitrage to occur for a discrete
parameter process can be found in Harrison and Kreps (1979). It
is important to make the distinction on the required conditions
for non-arbitrage, between discrete and continuous parameter
processes. As mentioned in Karatzas and Schreve (1998): ‘‘if one
cannotwin for certain by betting on a given process’’ (p. 33), i.e. one
cannot make a riskless profit, then under a discrete parameter

3 The theory assumes a geometric Brownian motion of asset prices and such
motion process invites the use of a calculus, also known under the name of ‘Ito
calculus’. A while ago, the mathematical finance literature considered a departure
from the above Brownian motion, by considering a so-called fractional Brownian
motion. Such motion is characterized by a degree of memory (this refers to the so-
calledHurst exponent). Ito integration in that context is then replaced by a so-called
Wick integral (Björk & Hult, 2005). Björk and Hult (2005) also report on how one
can (not) make arguments that such fractional Brownian motion is arbitrage free.

http://dx.doi.org/10.1016/j.jmp.2016.06.001
0022-2496/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmp.2016.06.001
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
mailto:eh76@le.ac.uk
http://dx.doi.org/10.1016/j.jmp.2016.06.001


2 E. Haven, A. Khrennikov / Journal of Mathematical Psychology ( ) –

process most often such process will be a martingale.4 However,
this is not necessarily the case when a continuous parameter
process is considered. Asset pricing is hinging very much so, on
the concept of an equivalent martingale which in essence refers
to the use of a probability which converts a semi-martingale into
a martingale. Karatzas and Schreve (1998) do mention that this
type of equivalent measure ‘‘bear(s) a striking similarity to de
Finetti’s (1937, 1974) theory of coherent subjective probabilities
and inferences...’’ (p. 34).We remark that in Haven and Khrennikov
(in press), we discuss subjective interpretations of probability
within a quantum-like environment. From the outset, we note that
since this paper will consider the notion of ‘quantum-likeness’,
we can as well make an attempt to describe what is meant with
this novel term. In Khrennikov and Haven (2016), we mention
in the preface that in fact it is the preponderance of the field of
quantum information, which puts to the fore the interpretation
that the wave function, a central object in quantum mechanics, is
informational in nature. As we explain, the formalism of quantum
mechanics can be used to describe information processing of any
system, whether social or physical, with the caveat that theremust
be some sort of quantum feature to the system under study. We
need to be careful with what we mean with ‘‘quantum feature’’.
The utilization of wave functions, or the use of analogies with an
uncertainty principle can (but does not have to) invoke quantum
features. Wave functions can be found in classical mechanics. The
idea of an uncertainty principle (for instance) exists in electrical
engineering (via the time–frequency uncertainty principle).Where
the term ‘‘quantum feature’’ hasmore traction, so to speak, is in the
areawhere quantum probability (in decisionmaking) is employed.
In that same area do we find the difficult concept of ‘context’
(Khrennikov, 2010). Quantum features occur also in the use of
Fisher information in economics and finance. Fisher information is
narrowly linked to a particular potential function which emerges
from quantum mechanics (see Hawkins & Frieden, 2012).

We also note that quantum-like models describing decision
making, when in particular such decision making occurs at the
level of the financial market, will not match the canonical un-
derstanding of rationality (based on Savage’s Bayesian approach).
Quantum-like decision makers are irrational (from the viewpoint
of the classical theory of rationality). At the same time they are
completely rational from the quantum-like viewpointwhere ratio-
nal behaviour corresponds to the non-Bayesian updating of prob-
abilities, which is mathematically represented by the quantum
probability calculus (Khrennikov, 2015). Aswas reflected in a num-
ber of publications on the theoretical analysis of arbitrage, the suc-
cess and failure of arbitrageurs is closely coupled to a degree of
irrationality (in the classical sense) of traders of the financial mar-
ket and especially their clients (in the case arbitrageurs do not op-
erate with their own money).

Within the context of gauge field dynamics, Ilinski (2001)
provides for a very elegant approach towards the formulation of
arbitrage. He uses the theory of fibre bundles and the curvature
of such fibre bundles to characterize the degree of arbitrage. The
theory of fibre bundles can be found in Steenrod (1951) and
Bishop and Crittenden (1964). We will be very brief on this theory.
However, we will be particularly interested in seeing how the
concept of ‘action’, Ilinski (2001) introduces, can operate in a non-
arbitrage context. We will therefore be keen in linking the role of
action to the existence of risk neutral probabilities and state prices.
Finally, amajor objective of this paperwill consist in characterizing
arbitrage within a Fourier integral setting.

4 Roughly, a martingale can be defined as a conditional expectation of a variable
St+1 (or a process of variables), where t + 1 indicates the future given the
information available up to t , Ft , such that E(St+1|Ft ) = St . A semi-martingale
requires that either E(St+1|Ft ) > St or E(St+1|Ft ) < St .

The outline of the paper is as follows. In the next section,
following Ilinski (2001) we briefly introduce the notion of a fibre
bundle and we attempt to show how curvature relates to the
concept of arbitrage. In the section following we consider the role
of linear action in the context of the (non) existence of arbitrage.
We then argue how such action plays a role in risk neutral
probabilities and state price formation. Section 5 of the paper
introduces the idea that the risk neutral probabilities (whether
they exist under the assumption arbitrage occurs or not) can
also be derived from a density function generated via a Fourier
integral. We will be careful in defining the precise (economics-
based) ingredients of this Fourier integral. Sections 6 and 7 provide
for two applications. Those two applications also go into quite
some detail in showing how interaction, arbitrage and the Fourier
integral may be linked together. Section 8 summarizes the two
applications and we conclude the paper in Section 9.

2. Fibre bundles and curvature

2.1. A short introduction

Fibre bundles are in fact quite easy objects to define in plain lan-
guage. Since this paper does not consider fibre bundles as the cen-
tral object of study, we will introduce the concepts in an as simple
way as possible. Ilinski (2001) says that ‘‘each fibre bundle consists
of identical subspaces that are all collected together... to give the
whole space’’ (p. 19). Ilinski (2001, p. 21) shows a simple example
of a tube which can be seen as a fibre bundle with a circular base
and line fibres. Amore involved examplemay consist of a fibre bun-
dle which is a ‘‘spherical base and the fibres which are two dimen-
sional tangent planes stuck to each point of the sphere.’’ (Ilinski,
2001, p. 25). We note that the fibre bundle is known under other
names such as ‘fibration’; ‘twisted product’ or also ‘Steenrod bun-
dle’ (see Monastyrsky, 1993, p. 48). Thus, we can intuitively grasp
(in a very informalway) that a fibre bundle can be amanifoldwith a
basewhich is amanifold. Fibres, F , whichmake up the fibre bundle
are alsomanifolds. Now, one can imagine a rule for the ‘movement’
of an element of the fibre, say x, from one point of the base to an-
other point of the base, say y. An operator, U (γ ) can be defined
which describes a ‘movement’ along some curve γ ; U(γ ) : Fx →

Fy. See below for more details (especially Definition 5).

2.2. Fibre bundle operators and curvature

Ilinski (2001) was the first to introduce and fine tune the
use of fibre bundles in an economics context. The objective of
this subsection is to briefly describe a simple example where the
curvature idea can be easily explained. Examples 1 and 2; Claims 3
and 4 and Definitions 5 and 6; and Example 7 follow Ilinski (2001,
p. 88–90).

Example 1. Assume we have two assets (i and i + 1): cash and
a share of a stock of some company. Then define U((i, n), (i, n +

1)) = er1∆; where r1 is the return on a share of a company and ∆

is the equally spaced time difference (between times n + 1 and
n). Hence, if one has 1 unit of currency to invest in a company
share over a period of time ∆ then one obtains (continuously
compounded): er1∆. Now define U((i + 1, n), (i + 1, n + 1)) =

er0∆, where r0 is the return on cash and ∆ is the equally spaced
time difference. The inverse movement can be defined too: U((i +
1, n + 1), (i + 1, n)) = e−r0∆ (this is the present value of 1
unit of currency). Similarly for the inverse movement, relative to
U((i, n), (i, n + 1)), which is U((i, n + 1), (i, n)) = e−r1∆. Now
consider U((i, n), (i + 1, n)) = Si, where Si is the price in unit of
currency for the share of a company (buy a share). One share is
thus exchanged on Si units of cash at some point in time ti. Define
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