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h i g h l i g h t s

• A market model is generalized to have certain features of real markets.
• Extremal dynamics leads to self-organization in the system.
• Observation of avalanche type features in a model market for a variety of networks.
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a b s t r a c t

We study the collective behaviour of interacting agents in a simple model of market
economics that was originally introduced by Nørrelykke and Bak. A general theoretical
framework for interacting traders on an arbitrary network is presented, with the inter-
action consisting of buying (namely consumption) and selling (namely production) of
commodities. Extremal dynamics is introduced by having the agent with least profit in
the market readjust prices, causing the market to self-organize. In addition to examining
thismodelmarket on regular lattices in two-dimensions, we also study the cases of random
complex networks bothwith andwithout community structures. Fluctuations in an activity
signal exhibit properties that are characteristic of avalanches observed in models of
self-organized criticality, and these can be described by power–law distributions when the
system is in the critical state.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Application of the methods of statistical physics and nonlinear science to different problems in economics has been an
active area of research in so–called econophysics [1–4], prompted in part by an interest in characterizing and understanding
the variousmechanisms that operate in amarket. By virtue of its structure, amarket is a good example of an evolving complex
dynamical system, being composed of a large number of interacting agents. Agents can be individuals, groups or firms; the
market forms a network of agents (the nodes), and the trading forms the links, with buying and selling activities giving both
direction and weight.

The network paradigm has been very useful in understanding interactions in a variety of complex dynamical systems,
and the role of network topology in modifying the system dynamics has been of interest [5]. In a market, there are
constraints relating to demand and supply or to available money under which each agent wishes to maximize profits.
An important aspect of the study of such constrained complex systems is to understand the nature of fluctuations in the
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collective behaviour that arises from the dynamics of many interacting agents. It has been shown [6] that the distributions
of different quantities such as price differences and returns have probability distributions that are non-Gaussian. The need
to comprehend and characterize the mechanisms that operate in a market – in particular stochastic fluctuations, chaotic
variations and nonlinearity – have seen applications of statistical mechanics to many economic models and form the basis
of predictions in financial markets [6–11].

Power–law distributions in economic systems are ubiquitous, dating to the early work of Pareto [12] and studied
extensively since the work of Mandelbrot [13,14]. Given the large number of interacting agents, financial markets are
quintessentially complex systems that are continuously evolving. An early hypothesis for the emergence of power–laws in
such systems has been that of self-organized criticality (SOC) [15–19] which has been applied extensively to various natural
phenomena. Systems exhibiting SOC are characterized by slow driving and instantaneous dissipation events thus having
separation of time–scales, and the system reaches its steady state, which is an attractor, without tuning of an external
parameter. Applications have ranged from studies of earthquakes [20] to evolution [21], forest–fires and epidemics [22],
neuronal dynamics [23] as well as to abstract entities in number theory [24]. Indeed, an early application of SOC was to the
study of fluctuations in an economic model [25].

A highly simplified market model of economic behaviour with N agents on a lattice in 1–dimension (with periodic
boundary conditions) was introduced by Nørrelykke and Bak (NB) [26]. The agent at site n produces qn units of a single
good at price pn and indulges in two transactions: sells her produce to the agent at (n − 1) and buys the good produced by
the agent at (n + 1); this constitutes one trading day/cycle. Every market player has a utility function given by

un = −c(qn) + d(qn+1) (1)

where −c(qn) is the discomfort faced or utility lost in producing qn units of goods. In this model c(·) is taken to be a convex
function of its argument, namely increasing with increasing slope: this makes it increasingly disadvantageous for an agent
to produce large quantity of goods. In contrast d(·), the comfort or utility gain is a concave function of its argument, typical
of the principle of diminishing marginal utility.

Each agent tries to maximize the individual utility function Eq. (1) subject to the constraint

pnqn = pn+1qn+1. (2)

The left side of the equation shows the total earnings of the nth agent where pn and qn are respectively the price per unit
and the total units of goods agent n produces and wishes to sell to her neighbour at n − 1. The right side of the equation
represents the total money spent by nth agent in buying qn+1 units of goods produced by her neighbour at n + 1, priced at
pn+1 per unit. This optimization yields two quantities, namely, the level of production qpn and the intended consumption level
qw
n for the nth agent. Differences in the demand and supply of goods leads to each agent finallymaking a profit, but as trading

continues, the agent with the smallest profit changes the product price in order to improve earnings. NB showed that while
SOC is attained, the model has a non–stationary attractor, in contrast to the usual attracting statistically stationary critical
state in most sandpile type models that show SOC [26].

In thisworkwe extend theNBmodel to higher dimensions and investigate themanner inwhich self-organization features
change. We also allow for the agents to choose, and this introduces non-local interactions in the network, and thus an
additional level of complexity. Building upon the simplified model proposed by NB in one-dimension, we assume that now
an agent can interact with several other agents, namely buy products from and sell goods to more than one other (see Fig. 1
below). Furthermore, agents may have different incomes, leading to differences in the level of expenditure according to the
priority and capacity of each agent. This gives a weighted network with the interaction strengths differing for each link. We
have examined the effect of some simple choices of weights on the system dynamics and our numerical results suggest that
the SOC features of the one-dimensional Nørrelykke and Bak model carry over to higher dimensions, for regular networks
as well as for complex networks including random graphs and topologies with community structures [27].

In Section 2 of this paper, we present a general framework for the NBmodel of interacting agents on a spatially embedded
complex network. The evolution rules are also discussed there, along with a brief description of the various interaction
topologies considered. The results of our simulations are presented in Section 3, which is followed by a summary and
discussion in Section 4.

2. The generalized interacting market

We generalize the NB model of agents interacting by trade, namely the buying and selling of goods, as follows. Each
agent continues to produce a single commodity, but this is sold to a set of customers, and goods are purchased from a set
of suppliers. The number of suppliers and customers can vary from agent to agent, and clearly this forms a general directed
interaction network. If the ith agent has Ki suppliers (see Fig. 1), the utility function can be written as [26]

ui = −c(qi) +

Ki∑
j=1

dj(qij). (3)

As discussed earlier, the functions c and d are convex and concave, respectively; we follow the earlier choices [26,28],
c(q) = q2/2, d(q) = 2

√
q. The first term in Eq. (3) represents the discomfort (utility lost) of the agent i in producing qi
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