Low-enthalpy geothermal energy as a source of energy and integrated freshwater production in inland areas: Technological and economic feasibility

Barbara Tomaszewska¹,², Leszek Pajak¹,², Jochen Bundschuh³,⁴, Wiesław Bujakowski⁵

¹ AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland
² Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7 str., 31-261 Kraków, Poland
³ Faculties of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, Weststreet, 4350, QLD, Australia
⁴ KTH Royal Institute of Technology, Teknikringen 76, SE-10044 Stockholm, Sweden

ARTICLE INFO

Keywords:
Desalination
Geothermal energy
Concentrate disposal
Injection
Energy
Emission

ABSTRACT

The paper presents an innovative approach to freshwater production using geothermal aquifers as a water and energy source. The main parameters which can potentially influence the results of the analysis were selected to investigate their effect on the proposed schemes, e.g. feed water quality, quality of the geothermal resource, concentrate utilisation and cost of freshwater production. A technical and economic feasibility study demonstrates that effective use of geothermal resources can include direct utilisation of geothermal energy in the heating system and the use of the cooled water as a source of freshwater obtained in a desalination unit. The comparison of the costs of freshwater from current freshwater resources in Poland (groundwater and surface water) with those calculated for the geothermal option showed that the costs of the latter are equal to the former. The treatment of geothermal water can bring an improved water balance for drinking purposes. In areas of high water deficit, the solution presented is a good example of the rational management of geothermal resources.

1. Introduction

Water and energy are two interconnected key scientific-technological problems of global significance. At the end of the 20th century, the deficit of water for human consumption and economic purposes forced us to focus on rational use of our resources. Therefore, increasing use of renewable energy and improving energy efficiency is a challenge for the 21st century.

It is well-known that the process for desalinating water is energy intensive and therefore involves significant power (heat, electricity) consumption and results in significant greenhouse gas emissions when fossil fuels are burnt to provide this energy using traditional technologies [1]. Nowadays, environmentally-friendly energy sources are increasingly used in order to desalinate seawater and many studies combine the desalination process, apart from the technology adopted, with renewable energy such as wind, solar, or geothermal sources [2,3]. In most cases the use of geothermal energy is analysed in classical systems (i.e. fossil-fuel powered) to provide electricity for desalination (e.g. reverse osmosis (RO) or heat to power thermally driven desalination processes, such as MSF (multi-stage flash), and MED (multi-effect distillation)) or technologies still in the development stage such as MD (membrane distillation) [4].

The advantage of geothermal heat sources is that the heat transfer fluid and the desalination process feed could be derived from the same steam (feed) which is “water”. These sources do not require a physical storage unit since they are stored in the aquifers below ground level and can be steadily (i.e. 24 h a day, 365 days a year) accessed to meet the process needs [5].

Goosen et al. [6] have provided a critical overview of seawater desalination using geothermal resources including assessment of the environmental risks, market potential and barriers to growth. They highlighted the point that the use of geothermal energy for thermal desalination can only be justified in the presence of easily accessible geothermal reservoirs, providing low-cost heat, which is synonymous with superficial sources. Undoubtedly, the potential and efficiency of using geothermal energy resources is directly dependent on the specific geological and hydrogeological conditions which can vary greatly worldwide.

Lack of water is a major feature of many most islands; this is also true for many inland areas in the World. There are regions where water...
needs are covered by drilled wells providing warm and brackish water, which is of inadequate quality both for human consumption and/or agriculture. The use of such geothermal water as a source for the production of freshwater using its heat as an energy source for its desalination can be an efficient method of freshwater production which avoids environmental impacts. While the desalination of saline waters has now been accepted as a potential alternative method of providing freshwater supplies, the energy demands of existing desalination technologies for water production continue to pose challenges in their application [5].

In several areas wells deep enough or located in areas with positive temperature anomalies can provide waters with temperatures high enough for desalination. This kind of geothermal system exists in many parts of the World, including Poland. The Podhale district heating system located in the southern part of Poland is currently the largest geothermal system in Poland and one of the biggest in Europe. As seen in our previous research [7,8], effective management of geothermal waters discharged from the heat exchanger (about 56–58°C) can include treatment to obtain high quality drinking water. The combined process might be of interest in water scarce regions worldwide. However, when water treatment systems are located far from the ocean or the sea, disposal of the concentrate obtained from the treatment process is a challenge and an economic concern; injecting into deep geological systems could be the preferred solution [9].

Nomenclature

- \(A, B, B_w \): auxiliary coefficients [-]
- \(a_s \): temperature compensation factor for the rock medium \([\text{m}^2/\text{s}]\)
- \(c_0 \): specific heat of water \([\text{J/(kg °C)}]\)
- \(C_{ch} \): annual cost of purchase of chemicals \([\text{€/yr}]\)
- \(C_{el} \): annual cost of electricity consumption \([\text{€/yr}]\)
- \(C_{m} \): annual cost of maintenance (e.g., repairs, assumed as 2% of total investments per year) \([\text{€/yr}]\)
- \(c_{rc} \): current cost of injecting geothermal water into the formation without the desalination process (only taking the cost of energy carriers purchased into account) \([\text{€/yr}]\)
- \(c_i \): specific heat of rock formation \([\text{J/(kg °C)}]\)
- \(c_t \): isothermal compressibility coefficient of rock skeleton \([1/\text{Pa}]\)
- \(c_r \): compressibility of mineralised water \([1/\text{Pa}]\)
- \(c_i \): compressibility of the conducting medium (active during the flow) \([1/\text{Pa}]\)
- \(C_t \): total annual cost of water treatment \([\text{€/yr}]\)
- \(d \): inner borehole diameter \([\text{m}]\)
- \(D_{fr} \): fixed asset depreciation (investment expenditure spread evenly over 15 years) \([\text{€/yr}]\)
- \(E_d \): amount of electricity used by pump for reinjection \([\text{J}]\)
- \(g \): Earth’s gravity \([\text{m/s}^2]\)
- \(h \): thickness of water-bearing layer \([\text{m}]\)
- \(h_a \): thickness of active layer \([\text{m}]\)
- \(H_a \): level of static water table, calculated in relation to ground surface \([\text{m}]\)
- \(H_b \): depth of borehole \([\text{m}]\)
- \(INV_{run} \): capital expenditure incurred for installation of water treatment \([\text{€}]\)
- \(k \): aquifer permeability \([\text{m}^2]\)
- \(k_h \): horizontal permeability \([\text{m}^2]\)
- \(k_v \): vertical aquifer permeability \([\text{m}^2]\)
- \(m_o \): water flow rate \([\text{kg/s}]\)
- \(p, p' \): pressure \([\text{Pa}]\), \(p'[\text{psi}]\)
- \(p_{wh} \): expected injection wellhead pressure \([\text{Pa}]\) (estimated and showed on Fig. 2)
- \(p_d \): pressure on wellhead in working condition (dynamic overpressure on the well head) \([\text{Pa}]\)
- \(P_{el} \): power consumption required by pump for treatment unit \([\text{W}]\)
- \(p_r \): required pressure of the treatment unit \([\text{Pa}]\) (in described cases \(p_r = 0.3 \text{MPa} \))
- \(p_{atm} \): atmospheric pressure \([\text{Pa}]\) (can be assumed as 0.1 MPa)
- \(q_{hr} \): heat exchange intensity \([\text{W/m}]\)
- \(r_1 \): radius of pressure changes caused by injection \([\text{m}]\)
- \(r_c \): cold front radius \([\text{m}]\)
- \(R_{ww} \): income from drinking water sales \([\text{€/yr}]\)
- \(r_w \): well radius \([\text{m}]\)
- \(r_{zr} \): damage zone range \([\text{m}]\)
- \(S \): salinity (percentage of substances dissolved in water by mass) [%]
- \(s \): fraction of substances dissolved in water by mass [-]
- \(t, T, T' \): temperature, \(t [°C], T [K], T'[°F]\)
- \(t_i \): injected water temperature at the liner level \([°C]\)
- \(t_a \): injected water temperature at Earth surface \([°C]\)
- \(t_w \): rock medium temperature \([°C]\)
- \(V_b \): injected water flow rate \([\text{m}^3/\text{s}]\) (assumed as: \(\text{Case } 1=255 \text{ m}^3/\text{s}, \text{Case } 2=261.4 \text{ m}^3/\text{s}\)
- \(h = 0.073 \text{ m}^3/\text{s}, \text{Case } 3=250.8 \text{ m}^3/\text{s}, \text{Case } 4=0.070 \text{ m}^3/\text{s}\)
- \(w \): liquid flow speed in the borehole \([\text{m/s}]\)
- \(\Delta p \): total required excess pressure to be generated by injection pumps \([\text{Pa}]\)
- \(\Delta p_s \): flow resistance in absorption well \([\text{Pa}]\)
- \(\Delta p_w \): resistance of water injection into water bearing layer \([\text{Pa}]\)
- \(\Delta p_n \): resistance connected with skin-effect, near to well liner \([\text{Pa}]\)
- \(\Delta V_{wpr}, \Delta V_{wct} \): auxiliary coefficients used during water density as a function of pressure and temperature estimation [-]
- \(\phi \): effective aquifer porosity [-]
- \(\gamma \): Euler’s constant [-]
- \(\lambda \): coefficient of friction [-]
- \(\lambda_t \): coefficient of thermal conduction through the rock medium \([\text{W/(m K)}]\)
- \(\mu \): dynamic viscosity of injected liquid \([\text{Pa s}]\)
- \(\mu_0 \): dynamic viscosity of water at reservoir temperature and atmospheric pressure \([\text{Pa s}]\)
- \(\mu_t \): dynamic viscosity of water at injection temperature \([\text{Pa s}]\)
- \(\mu_0 \): dynamic viscosity of water at natural reservoir temperature \([\text{Pa s}]\)
- \(\eta \): energy efficiency of pump [-]
- \(\rho \): liquid density \([\text{kg/m}^3]\)
- \(\rho_0 \): liquid density \([\text{kg/m}^3]\)
- \(\rho_{av} \): averaged density of liquid injected into the borehole, above the static water table \([\text{kg/m}^3]\)
- \(\rho_{av wt} \): average density of the liquid injected into the source formation layer, in dynamic conditions (during injection), at the depth interval of \(H_2 \) to \(H_w \) \([\text{kg/m}^3]\)
- \(\rho_{af n} \): average density of the liquid in the borehole, under steady state (natural) conditions, at the depth interval from \(H_2 \) to \(H_w \) \([\text{kg/m}^3]\)
- \(\rho_{at} \): water density at injection temperature \([\text{kg/m}^3]\)
- \(\rho_0 \): water density at natural reservoir temperature \([\text{kg/m}^3]\)
- \(\tau, \tau_1, \tau_2 \): time \([\text{s}]\), assumed time period from \(\tau_1 \) in beginning and \(\tau_2 \) in the end \([\text{assumed values: } \tau_1 = 0 \text{ s}, \tau_2 = 64 \text{ yr} = 2.02109 \text{ s}]\)
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات